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Survival models are widely applicable in industry and clinical 
research. For example, one would like to predict which light 
bulb is likely to fail based on a range of monitoring measure-

ments. In medical research, survival analyses are broadly applied 
to establish prognostic indices for the mortality of a disease and 
the outcome of a treatment. Irrespective of their specific applica-
tion, survival models try to deal with a specific category of prob-
lem, where, with the observations available at one particular point 
or until a particular time point, we try to predict the likelihood of 
survival based on right-censored data. Right-censoring refers to the 
data type where the end outcome is a combination of observation 
time and a binary label: 1 for death/failure or 0 for alive (a censored 
data point).

The nature of right-censoring makes survival analysis unsuitable 
for most machine learning algorithms. In a typical machine learn-
ing problem, we have a single target to predict, which can be binary 
or continuous. For right-censored data, two targets (time and sta-
tus) are concurrently present for each sample. To address this chal-
lenge, a proportional hazard model was developed over fifty years 
ago by Cox1 to model the effect of multiple covariates on an indi-
vidual through the hazard function. Since its invention, the Cox 
model has been the primary method used in survival analysis. In 
2008, Ishwaran et al. invented the random survival forest (RSF)2–4, 
which takes advantage of the splitting operation of tree-based algo-
rithms to deal with the two targets involved in survival models. A 
number of other survival models have also been developed, such as 
the ‘accelerated failure time’ model5,6 and exponential and Weibull 
models7. However, they, together with the Cox and RSF models, are 
all based on a single assumption: the censoring of a sample does not 
provide any information regarding the prospects of survival beyond 
the censoring time.

Recent advances in deep learning have allowed it to be built into 
survival modeling, but the above limitations remain. For example, 
DeepHit constructs a loss function that includes a binary entropy 
loss that only takes 1 and 0 binary labels and a ranking loss between 

‘acceptable pairs’, that is, pairs for which the earlier time point indi-
vidual is dead8. This method shares similarity with the Cox model. 
Another example is the attempt to build neural ordinary differen-
tial equations into survival modeling8,9. In this method, data from 
a chunk of time are taken, then this chunk is used to estimate the 
influence of each parameter by studying the patients that are still 
at risk. In this sense, it shares similarity with RSF. In both cases, 
the censoring of a sample will make it ineligible when paired with 
prospective samples.

We challenge the above practice of not considering an early cen-
sored sample when it is paired with another prospective sample, as 
we consider the time of censoring can be informative, and thus mak-
ing the relative position of two censoring points or the prospects 
of survival beyond censoring informative. We also challenge the 
requirement to fix with a particular regression learning algorithm 
for survival models. For example, although the Cox model can be 
generalized to account for the time variability of the importance of 
features, that is, the ‘general hazard rate model’, it does not eliminate 
the assumption of a multiplicative relationship of the hazard ratios.

One open question is how to generalize survival models to data-
sets that are timewise or spatially continuous and are thus more 
suitable for either convolutional neural networks or recurrent neu-
ral networks (RNNs). For example, if we observe patients during a 
consecutive time, we would like to build a long–short-term memory 
(LSTM) to capture time-series information. In this case, neither the 
Cox nor RSF model, which rely on very specific modeling methods 
(hazard ratio and random forest, respectively) to predict survival, is 
suitable. Recent attempts to build deep learning with survival mod-
els either extract discrete features from deep learning and then feed 
into Cox models10,11 or train with partial log-likelihood loss, as used 
in Cox12,13. Each of these approaches has limitations. By creating an 
intermediate step that extracts features, we do not fully maximize 
the potential of deep learning to extract high-level information. By 
training with a partial log-likelihood loss, we again assume a likeli-
hood relationship and, due to the batch training in deep learning, 
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the log-likelihood calculation could be questionable for a single 
batch. More broadly, how could we establish a statistical modeling 
that allows adaptation to any kind of regression learning algorithm 
(for example, linear, boosting trees, Gaussian process regression, 
support vector vachines and many others)?

In this study, we present a uniformed model that generalizes 
right-censored data to a standard regression problem, which allows 
the application of any type of regression learning algorithm to a 
survival prediction problem. We explain the theoretical basis of its 
advantage. We demonstrate its application in clinical informatics, 
image and time-series data in medical applications and industry 
cases, involving gradient boosted trees, convolutional neural net-
works and RNNs. We envision this method will become an impor-
tant reference for survival analysis, particularly for datasets that are 
more suited to classifiers beyond hazard ratio and random forest.

results
Generalization of right-censored data to a regression problem. 
For typical right-censored data, the first column is the sample/
patient ID and the second column is the last date when the sample/
patient is observed. The third column is the status of the sample/
patient at its last observation date. If the status is 1, the sample failed 
(or the patient died) at that date. If the status is 0, the sample has not 
failed (or this patient is alive) on the last observation day and this 
data point is termed ‘censored’. For a sample that is censored at a 
particular date, we have no information whether this sample will fail 
on the next day or 10 years later. Because not all samples have failed 
at the last observation date, generic regression methods cannot be 
used on this type of censored data. Our goal is to transform this 
two-target (status and time) data into a generic regression problem.

The goal of our model, which we refer to as a complete rank 
method, is to assign each training sample with a single value 
through a uniformed scheme. This single value will be the target 
in the regression, and any regression learning algorithm, including 
deep learning, can be integrated later. It is not intuitive how this 
can be done with two targets, time and status at the beginning, and 
direct ranking of any or a subset of any is erroneous. However, rank-
ing is not only achievable by sorting a single array of numbers—it 
can also be achieved by thorough pairwise comparison among all 
samples. For example, if we have 100 balls, each of a specific size, we 
can acquire their ranking by ordering them by size. Alternately, we 
can acquire a specific ball’s relative ranking by comparing it against 
every other ball along the survival curve (Fig. 1a,b). This property of 
ranking allows us to give a complete rank of samples in a censored 
dataset, by assigning the probabilities of one sample ranking ahead 
of another sample, when the absolute relative ranking is ambiguous 
due to censoring.

We now break down the right-censored dataset into different 
situations of pairwise comparisons. Let us order the samples so 
that those that are going to fail early will end up having a higher 
target value. We use T to denote last observation time, no matter 
whether the sample is censored or not, and use S to denote status 
(S = 1 indicates a failed case and S = 0 indicates a censored case). A 
pair of samples A and B may have the following four possibilities 
when TA < TB (Fig. 1c):

SA = 1 and SB = 0 Case 1

SA = 1 and SB = 1 Case 2

SA = 0 and SB = 1 Case 3

SA = 0 and SB = 0 Case 4

When TA = TB:

SA = SB Case 5

(SA = 1 and SB = 0) or (SA = 0 and SB = 1) Case 6

For case 1 and case 2, we add 1 to the rank of A and add zero to 
the rank of B, as we know A failed before B. Both case 1 and case 2 
are sufficiently considered in the Cox model and RSF, but cases 3 
and 4 are not considered in the maximal likelihood function in the 
Cox model or in the log-rank test in RSF or any other deep learning-
based method discussed above.

We then calculate the Kaplan–Meier (K–M) curve. This curve 
gives an estimation of the survival function over time, r(t), which is 
the proportion of non-failed cases at time t. For case 3, B failed at 
TB. If A, which is censored at TA, fails between TA and TB, A should 
have a higher rank than B; otherwise, B ranks above A. We cannot 
determine a binary relative ranking of this pair. However, we can 
derive the probability that A fails between TA and TB and thus rank 
above B using the K–M curve:

P =
r (TA)− r(TB)

r(TA)
(1)

which is the probability that A fails before B, and is the value added 
to the rank of A:

P =
r(TB)

r(TA)
(2)

which is the probability that B fails before A, and is the value added 
to the rank of B.

For case 4, both samples are censored, and we first calculate the 
probability of A failing before the observation time of B (instead of 
before B fails, as we do not know when B will fail due to its censored 
status):

P∗ =
r(TA)− r(TB)

r(TA)
(3)

The probability of A failing after the observation time of B would 
the be 1 − P*. As we know that B fails after TB, without any other infor-
mation, the probability of B failing before A would be 0.5 × (1 − P*), 
which is added to the rank of B; that is, the chance is equal after TB. 
The probability of A failing before B is P* + 0.5 × (1 − P*), which is 
added to the rank of A, that is, the chance that A fails before TB, and 
50% chance after reaching time point B.

For case 5, as both the time and status are the same for samples 
A and B, we add 0.5, respectively, to their ranks. For case 6, as the 
time is the same but the status differs, we add 1 to the rank of the 
failed case.

Up to this point, we are able to complete all comparisons between 
all types of data point pairs in the censored data, and thus we are 
able to acquire a relative ranking of the likelihood of failing for all 
samples in the training set. By dividing this vector by the total num-
ber of examples, we acquire a vector with values between 0 and 1, 
representing the relative likelihood of a sample failing. This is our 
final target that we can build into any regression learning algorithm, 
be it random forest, gradient boosted trees, linear regression, neural 
network, Gaussian process regression or support vector machine, 
and it is no longer limited to datasets whose features are vectors, as 
will be demonstrated in the following.

Experiments with simulated survival data. We will demonstrate the 
robustness of the complete rank method, compared to the Cox and 
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RSF models, using a simulated survival dataset, in which the prob-
ability that a sample fails on a particular day is correlated with a set of 
parameters (Fig. 2a). We assume a population with mean daily death 
rate ρmean, and standard deviation σ. The hidden risk of each indi-
vidual ri is sampled from N(ρmean, σ), and we force the minimal risk 
to be zero. We assume a total of n examples, and m features that can 
be used to predict survival. Each feature j is parameterized by noise 
factor εj, uniformly drawn from [0, β]. Thus, the maximal level of 
noise of a simulated dataset is controlled by β and the noise level of an 
individual feature j is controlled by εj. The value of the jth feature of 
the ith sample, vij, is further parameterized by θ, which is uniformly 
distributed in [−0.5, 0.5] and thus introduces a different noise value 
to each vij, to incorporate the noise factor to each example:

vij = ri × fj(1+ θ × εj) (4)

where j refers to the jth feature and fj represents the scaling factor of 
a particular feature, uniformly drawn from [0, α]. The above gener-
ated feature set will have the following properties. Each feature is 
correlated with the death rate, and the correlation is determined by 
εj, where the higher the εj, the less overall correlation between this 
feature and the death rate. The scale of a feature is driven by fj, where 
the bigger the scaling factor, the bigger the deviation this feature 
will have across individual samples. Assuming that we start with a 
population of individuals that are all alive and create the death rate 

for each individual, we can generate an n × m matrix as features for 
these individuals, where n is the number of individuals and m is the 
number of features.

Next, we simulated the censoring status of the data. First, we 
assumed a maximal date of observation for all examples, δmax. 
Between [0, δmax] days, we created a binomially distributed vector 
of length δ ~ B(δmax, ρi), where ρi is the failing rate of sample i. The 
first occurrence of 1 in this binomially distributed vector defines 
the death date Tf. Next, we uniformly sampled, between [0, δmax], the 
censoring date Tc. If Tc < Tf, the sample is censored, with a status of 0 
and censoring time Tc; otherwise, the sample failed, with a status of 
1 and time to event of Tf.

We started with δmax = 1,000, ρmean = 0.0001, σ = 0.0002, β = 1, 
α = 100, n = 1,000 and m = 100. This created a dataset with 1,000 
samples and 100 features, at a scale similar to that of commonly 
seen survival data. Approximately 12.5% of the samples failed, and 
the rest are either censored or did not fail even on day 1,000. Unless 
otherwise specified for testing model robustness, these are the base 
parameters we used. For the ranking method, we built in extreme 
gradient boosted trees, which cannot otherwise be used for survival 
models. With this starting point, we first checked several expected 
behaviors of the model. First, as σ increases, the performance of 
all models increases because the difference of risks among indi-
viduals increases (Supplementary Fig. 1). Second, the scaling fac-
tor α, which only changes the scale of the features, does not affect  
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Fig. 1 | Generalizing right-censored data analysis to a regression problem by complete rank. a, Ranking can be achieved by either assigning each sample 
a unique value (absolute ranking) or comparing one example against every other example. b, Using a survival curve and individual F as an example, we 
illustrate three of the possible comparison scenarios in right-censored data: an early failed (F)–late censor pair (B); an early censor (A/E)–late failed 
pair (F); an early death (F)–late failed pair (C). c, Calculation of the ranking values added to each example in every paired case of censor and death 
combinations. Cases highlighted with a light cyan background indicate those already considered by existing survival models.
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performance (Supplementary Fig. 2). Third, the performance in 
general increases as the number of examples increases until 5,000 
individuals, but RSF seems to have a disadvantage when the number 
of examples is extremely large (Supplementary Fig. 3 and Fig. 2b,c).

We found that a major factor affecting model performance is the 
noise factor εj, uniformly drawn from [0, β] (Supplementary Figs. 4 
and 5 and Fig. 2d). Both the ranking method and the RSF performed 
robustly when β increased, until 100 (high noise in features), but 
the performance of the Cox model dropped towards random per-
formance. This indicates that the Cox model is unable to pick up 
important features and upweight them when the data contain a lot 
of noise. Across all cases, the complete rank method performed well 
(Fig. 2 and Supplementary Figs. 1–8).

To evaluate the validity and robustness of the method when  
censoring depends on the features, we simulated cases where the 

censoring possibility of an individual is correlated to one input 
feature. We tested in the range between 0 correlation and 0.5 cor-
relation of the censoring rate to one feature (among a total of five 
features). Although all models drop performance as the correlation 
increases, the complete rank method showed a substantial advan-
tage in alleviating this confounding factor and demonstrated robust 
performance (Fig. 2e and Supplementary Fig. 9). We also tested 
the effect of censoring on the performance by allowing 10–50% of 
the failed examples to be censored, and found that the complete 
rank method is robust to different censoring levels (Fig. 2f and 
Supplementary Fig. 10).

To further evaluate the robustness of the method when the simu-
lation is Cox-specified, we resimulated the survival data following a 
previous work that first specifies a base survival function and then 
applies hazard ratios of parameters on top of it14. In particular, we 
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Fig. 2 | Simulation experiments for complete rank in different scenarios. a, Simulation scheme. We first randomly draw a death rate for each sample. 
next, the feature matrix (blue) is created by incorporating the noise level, a random scaling factor and a random parameterization factor. We then simulate 
censoring by a uniformed selected censoring date, while the death date is binomially distributed. b, Performance comparison across different numbers of 
examples used in training. c, Performance comparison across different numbers of predictive features used for the training. d, Performance comparison 
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restricted the simulation to proportional hazards. Complete rank 
demonstrated superior performance across the following param-
eters. First, complete rank performs well across all censoring rates, 
but showed a greater advantage at a high censoring rate (Fig. 2g). 
Second, although all performances increased as the data con-
tained more examples, or more features, complete rank remained 
top across a large spectrum of parameters (Supplementary Figs. 11 
and 12). Third, the performance of complete rank is robust when 
censoring depends on features (Supplementary Figs. 13 and 14). 
Fourth, the performance of complete rank is robust against how 
discriminative the features are (Supplementary Fig. 15). In this set 
of simulations, we first simulated the baseline hazard function and 
then simulated features according to proportional hazards, which is 
correctly specified to the Cox model. The performance of the com-
plete rank method in this set of simulation supports its robustness 
across different scenarios.

Overall, the calculation of the rank function was swift, taking 
~30 s for 10,000 samples (Supplementary Fig. 16), making it suitable 
for a wide range of computation tasks.

Prediction of cancer survival using histological images and clini-
cal information. In this section, we demonstrate how the same 
training targets generated by the ranking method can be used to 
train two drastically different types of feature data to predict sur-
vival—medical images and clinical measurements—by using differ-
ent regression learning algorithms. Here, we used hematoxylin and 
eosin (H&E) images from the The Cancer Genome Atlas (TCGA) 
database15 using the Genomic Data Commons (GDC) Data Portal, 
including breast invasive carcinoma (BRCA), colon adenocarci-
noma (COAD), kidney renal clear cell carcinoma (KIRC) and liver 
hepatocellular carcinoma (LIHC). We integrated the complete rank 
and cancer images into the deep learning models. Cancer cases with 
at least one histopathological image were included in the study. We 
also downloaded the clinical data used for computing the complete 
rank. A total of 2,453 individuals (BRCA, 1,084; COAD, 457; KIRC, 
537; LIHC, 375) and 6,201 histopathological images (BRCA, 3,070; 
COAD, 983; KIRC, 1,656; LIHC, 492) were used in the study. Each 
individual could have multiple images. We carried out fivefold 
cross-validation, separated by individuals, to evaluate the perfor-
mance of the method.

We used a typical deep learning architecture for training patho-
logical section images (Fig. 3b), which consisted of a series of con-
volutional MaxPool blocks, connected to a final dense layer. The 
training target was the complete rank scores of the training set. 
Because each patient had more than one image in the database, 
the survival prediction for each patient was calculated by averag-
ing predictions from each image. Through cross-validation, we 
demonstrated that pathological images can predict survival with 
an average C-index (concordance index) between 0.525 and 0.634. 
For liver cancer, pathological images are not very predictive of sur-
vival, but for the other three types, pathological images can provide 
information for survival. Although the performance, per se, was not 
high, which is expected as we are dealing with histological images, 
which may not directly provide survival information, this analysis 
supports the potential of integrating complete rank with images to 
establish survival models. It is now widely recognized that, due to 
spatial continuity, deep learning (convolutional neural networks) 
has a great advantage over other methods in analyzing image data. 
The complete rank method described above will allow seamless 
integration of survival models with deep learning to analyze images.

The rank scores are, in fact, flexible to being built with any 
regression learning algorithm and with any feature data. For dem-
onstration, we also constructed survival models on the clinical data 
(gender, race, age, tumor stage and primary diagnosis) using these 
rank scores. The regression learning algorithm is LightGBM, a tree-
based algorithm. We achieved C-index values above 0.7 in fivefold 

cross-validations for three out of four cancer types (not LIHC; Fig. 
3c). This result is consistent with the trend of deep learning-based 
image models, where liver cancer is the hardest to predict, possibly 
because the number of samples is relatively small15. As expected, 
direct clinical observations resulted in better-performing survival 
models than histological images. We also combined the image and 
clinical models and observed further improvement. The average 
C-index values of fivefold cross-validation were 0.756, 0.714, 0.757 
and 0.607 for BRCA, COAD, KIRC and LIHC, respectively. This 
example demonstrates the flexibility of the complete ranking when 
applied to both image and classical data types and built with diverse 
regression learning algorithms.

Prediction of disk failure using time-series data. To further dem-
onstrate the flexibility of the algorithm when applied to a different, 
industrial, setting and time-series dataset, we examined its applica-
tion to reliability data for hard disks, in comparison to binary labels 
of failure and alive. We downloaded 2013–2015 Backblaze disk fail-
ure data16. Specifically, the Backblaze data record the status of disks 
every day. Each hard disk is assigned a unique ID. If a disk fails on a 
particular date, the status will be labeled as 1 on that date, and this 
unique ID will disappear in all following days as the disk is replaced 
by a new one in the computer cluster. On each day, a total of 86 
features are included to describe the physical characteristics of the 
disks, such as storage, type and the running status of the disks—all 
continuous features. If a disk ends on the last day of 2015 with a 
status of 0, it means the disk still runs fine on that date.

We are interested in this question: on a specific date, given all 
existing data from previous days, what is the risk of disk failure? 
We first created a relatively unbiased censored dataset from the 
data. A potential bias in the data is that a large proportion of the 
disks start with the date 10 April 2013, while others started at other 
dates in distinct batches. As hard disks tend to have different failing  
rates by batch, we do not want the model to know which batch/
date the disks come from. We thus uniformly sampled from [0, Tlast]  
for each sample to create a new start date, Tstart, where Tlast is the  
last observation date or the failure date of a disk (the date where 
we have the survival status). Between Tstart and Tlast, we randomly 
select a date and designate it as Tstop, which is the date until which 
we have access to the observed features; that is, we make predic-
tions at Tstop. Thus, the input feature contains the 86 features from 
Tstart to Tstop and the output observation is time Tlast − Tstop and status. 
The output observations are used to create the rank scores in the 
training set, and the evaluation gold standard for the test set. Unlike 
the cancer study presented above, we not only have the baseline 86 
features on Tstart, but also all time-series features until Tstop, totaling 
86 × (Tstop − Tstart) features.

RNNs are typically used to extract information from such time-
series data, and, in this case, the rank scores allow us to build in 
RNNs. We constructed the RNN model, building on the time-series 
features between Tstart and Tstop. Briefly, this network has a bidirec-
tional LSTM (or BiLSTM) layer17 followed by two fully connected 
layers plus one rectified linear unit (ReLU) layer. We compared two 
strategies of training, one directly trained against the final status of 
the disk (failure as 1 and working as 0) and the other trained with the 
rank score created from the training set. Through cross-validation, 
we found that training with the rank improved the performance of 
predicting disk failure on the test set when the numbers of training 
samples were small (Fig. 4b). Of note, no existing survival model 
can build in these RNNs. Furthermore, one important advantage 
of the ranking method we present here is fully utilizing all training 
data, particularly the censored group. We observed a greater advan-
tage of the ranking method over the binary training gold standard 
when the training set became smaller, corroborating the above 
argument. This experiment demonstrates the generalizability of the 
method presented in this study to time-series data.
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Discussion
We consider that this approach addresses two limitations present in 
existing survival models. The first is the assumption of the relation-
ship between the features and the outcome. For example, the Cox 
model assumes a multiplicative relationship of hazard ratios. The 
accelerated failure time model assumes that the effect of a covariate 
is to accelerate or decelerate over time by a constant18. Such model-
ing approaches are very different from machine learning approaches 
and thus prevent the integration of the majority of regression learn-
ing algorithms. The other example is RSF, in which random forest 
is forced to be the algorithm. The complete rank method allows 
flexible integration of any supervised machine learning algorithms, 
including deep learning. Using this method, we will be able to test 
all supervised regression learning algorithms.

The other assumption we question in existing survival models is 
the contribution of censored points, in which the early-censored–
late-uncensored pairs and early-censored–late-censored pairs are 
mostly not considered in the modeling. We argue that the differ-
ences in censoring time, in combination with the K–M curve, can 
provide meaningful information to the model. We envision future 
wide application of this method in industry and medical sciences.

One limitation of this study is that the rank score does not 
directly predict time to event, which warrants future investigation. 
Furthermore, we have focused on individualized predictions of sur-
vival status. Often, we encounter in clinical and industrial settings 
a situation where a population-derived overall distribution of the 
expected survival status is expected. Estimating the distribution 
of a new population using an existing population’s observations is 
of great use in practice, but not as yet well-formulated or explored 
in the literature. Future development of this and other methods to 
population-wise studies will be valuable.

methods
Evaluation of cross-validation performance. Survival models are typically 
evaluated using the C-index. We used the survival package of R to calculate the 
C-index values. All evaluations were carried out by standard fivefold cross-
validation in this study.

Cox-specified simulation. To test the robustness of the algorithm, we used sim.
survdata in R to simulate a set of data that are specified to Cox. We started with 
1,000 examples, 50 features, a discriminative level of 2.5 and a censoring rate of 0.5 
and then scanned across all parameters to evaluate the relative performance of Cox, 
complete rank (linear regression as the regression learning algorithm) and RSF.

Training deep learning models for cancer images. Separate models were built 
for each type of cancer. The training, validation and testing tests were split based 
on cases (rather than images) in a ratio of 6:2:2. The validation set was used to call 
back the best model and prevent overfitting. We used a nested training strategy 
to improve the robustness of the model and make full usage of the training set. 
Specifically, for each model, five models were trained in parallel based on different 
training and validation data partitions. Finally, the predictions on the test set from 
five models were assembled as the final prediction of the model.

After retrieving whole-slide images from TCGA, several image preprocessing 
steps were conducted. We scaled the long edge of each image into 1,024 pixels with 
fixed aspect ratios and padded the entire image to 1,024 × 1,024. We normalized 
the pixel values for each channel.

We trained the network with the architecture presented in Fig. 3a. Specifically, 
we built a convolutional neural network with a total of 14 convolutional layers and 
four max-pooling layers. We first added a convolution-convolution-pooling block 
consisting of two convolutional layers with kernel size of 3 and one max-pooling 
layer with kernel size of 2. This convolution-convolution-pooling block reduced 
the image size by half and four blocks were used to gradually change the input size 
from 1,024 × 1,024 to 64 × 64. Six additional convolutional layers were added to 
gradually reduce the number of channels to 1. In each of the convolutional layers, 
ReLu activation was used to introduce nonlinearity. The last convolutional layer 
was flattened and two dense layers were used to generate the final output with 
‘sigmoid’ activation. We used mean squared error loss, as the ranking value is 
continuous. We used the Adam optimizer and a batch size of 10. We first trained 
the neural network model with a relatively large learning rate of 1 × 10−3 for 20 
epochs, then continued to train another 40 epochs with a smaller learning rate of 
1 × 10−4, resulting in a total of 60 epochs. To avoid potential overfitting, we further 
augmented the training data by multiplying all pixel values by a random number 

between 0.90 and 1.15. We also randomly flipped the training images horizontally 
and/or vertically. The model was implemented in Tensorflow.

Training LightGBM models for clinical informatics data. For the clinical features 
(gender, race, age, tumor stage and primary diagnosis), we built LightGBM models 
to predict survival. Specifically, we one-hot encoded all clinical features that were 
categorical, then trained LightGBM models with a maximum of 500 boosting 
rounds and applied the early stopping strategy if the loss did not drop further for 
20 consecutive rounds. We set the number of leaves to 5 to control the complexity 
of the tree models, and the minimum number of data within a leaf was 3. We used 
a bagging fraction of 70%.

Training of LSTM models for disk failure data. For both the classification 
method with binary labels and the ranking method, we used a neural network 
with a BiLSTM layer17 followed by two fully connected layers plus one ReLU layer. 
The BiLSTM layer concatenated the outputs from two hidden layers of opposite 
direction to the same output and learned bidirectional long-term dependencies 
of the time-series data. Two fully connected layers were used to produce the 
prediction and the input sizes were 512 and 100, respectively. We used a learning 
rate of 0.001, batch size of 32, 50 total epochs and used 20% of the training data 
as the validation set to call back the best model. The model was implemented in 
PyTorch and shared in the GitHub repository.

Data availability
Simulated data are available at from GitHub (https://github.com/GuanLab/
GuanRank_All). TCGA data15 are third party and downloadable from their 
websites using the Genomic Data Commons (GDC) Data Portal19. Backblaze disk 
failure data are third party and downloadable from the Backblaze harddrive data 
and stats website16. Source data are available with this paper.

Code availability
Source code is available at https://github.com/GuanLab/GuanRank_All (ref. 20). No 
restriction is placed on access.
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