Biomedical Data Mining with Matrix Models

SDM 2016 Tutorial Part II May 5, 2016

Ping Zhang Center for Computational Health IBM T.J. Watson Research Center <u>pzhang@us.ibm.com</u>

Recent Applications in Biomedicine

- Similarity Network Fusion and Identification of Cancer Subtypes
 - Joint Matrix Factorization and Drug Repositioning
 - Nonnegative Matrix Tri-Factorization and Patient-Specific Data Fusion
 - Tensor Factorization and Patient Phenotyping

Omics technologies in biomedicine

R. Wu, et al. Novel Molecular Events in Oral Carcinogenesis via Integrative Approaches. *JDR*, 90(5):561-572, 2010.

The Cancer Genome Atlas Pan-Cancer analysis project

The Cancer Genome Atlas Research Network, et al. The Cancer Genome Atlas Pan-Cancer analysis project. *Nature Genetics*, 45:1113-1120, 2013.

Patient similarity networks

How to combine different networks?

Issues:

- Large number of measurements, small sample sizes (p>>n)
- Need to integrate common and complementary information
- Not all measurements can be normalized and mapped to the same unit

Similarity network fusion

Wang B, et al. Similarity network fusion for aggregating data types on a genomic scale. *Nature Methods*, 11:333-337, 2014.

Construct similarity networks (1)

Construct similarity networks (2)

Combine networks (1)

Combine networks (2)

Case study: glioblastoma multiforme (GBM)

Clinical properties of the subtypes

Biological characterization of the subtypes

From subtype-based to network-based outcome prediction

Comparisons on an METABRIC breast cancer data

Cox objective
$$lp(z) = \sum_{i=1}^{n} \delta_i \left(\mathbf{X}_i^T z - \log \left(\sum_{j \in \mathbf{R}(t_i)} \exp(\mathbf{X}_j^T z) \right) \right)$$

Network-regularized objective Incorporate fused patient network structure

$$lp(z) = \sum_{i=1}^{n} \delta_{i} \left(X_{i}^{T} z - \log \left(\sum_{j \in \mathbf{R}(t_{i})} \exp(X_{j}^{T} z) \right) \right) - \lambda \sum_{i} \sum_{j} (X_{i}^{T} z - X_{j}^{T} z)^{2} w_{ij}$$

CNV and expression data

Discovery: 997 patients, Validation: 995 patients

	PAM50 (5 clusters)	iCluster (10 clusters)	SNF (5 clusters)	SNF (10 clusters)	Network
P value discovery cohort P value validation cohort	3.0 × 10 ⁻⁹ 1.7 × 10 ⁻⁹	1.2 × 10 ⁻¹⁴ 2.9 × 10 ⁻¹¹	6.10×10^{-11} 5.12×10^{-13}	3.31 × 10 ⁻¹² 7.86 × 10 ⁻¹²	-
CI discovery cohort CI validation cohort	0.560 0.551	0.621 0.605	0.638 0.633	0.638 0.633	0.720 0.706
					15

Summary of patient networks framework

- Creates a unified view of patients based on multiple heterogeneous sources
- Integrates gene and non-gene based data
- Robust to different types of noise
- Obtain superior results on regular tasks such as subtyping and outcome prediction
- Scalable

Wang B, et al. Similarity network fusion for aggregating data types on a genomic scale. *Nature Methods*, 11:333-337, 2014.

Recent Applications in Biomedicine

- Similarity Network Fusion and Identification of Cancer Subtypes
- Joint Matrix Factorization and Drug Repositioning
 - Nonnegative Matrix Tri-Factorization and Patient-Specific Data Fusion
 - Tensor Factorization and Patient Phenotyping

The Challenge of Drug Discovery

High cost, long time, and low success rate

Reichert JM. Trends in development and approval times for new therapeutics in the US. *Nature Reviews Drug discovery*. 2003;2(9):695-702.

Drug repositioning

• Drug repositioning (also known as Drug repurposing, Drug reprofiling, Therapeutic Switching and Drug re-tasking) is the application of known drugs and compounds to new indications (i.e., new diseases).

Drug	Original indication	New indication
Viagra	Hypertension	Erectile dysfunction
Wellbutrin	Depression	Smoking cessation
Thalidomide	Antiemetic	Multiple Myeloma

The repositioned drug has already passed a significant number of toxicity and other tests, its safety is known and the risk of failure for reasons of adverse toxicology are reduced.

Shorter timelines & less risk

De novo drug discovery and development

• 10–17 year process

<10% overall probability of success

Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. *Nature reviews Drug discovery*, 3(8):673-683, 2004.

a

Computational drug repositioning

Drug Resources and Disease Resources

Phenotype/Symptom

Ontology

Disease Gene

Joint Matrix Factorization (JMF)

Zhang, P., Wang, F., Hu, J. Towards Drug Repositioning: A Unified Computational Framework for Integrating Multiple Aspects of Drug Similarity and Disease Similarity. *AMIA*, 2014.

Algorithm Flowchart of JMF

JMF as an optimization problem

	D_k	n×n	The <i>k</i> -th drug similarity matrix
Notations and symbols of the	S_l	m×m	The <i>l</i> -th disease similarity matrix
methodology	U	$n \times C_D$	Drug cluster assignment matrix
	V	$m \times C_s$	Disease cluster assignment matrix
	Δ	$C_D \times C_S$	Drug-disease cluster relationship matrix
	R	$\mathbf{n} \times \mathbf{m}$	Observed drug-disease association matrix
	Θ	$\mathbf{n} \times \mathbf{m}$	Densified estimation of R
	ω	$K_d \times 1$	Drug similarity weight vector
	π	$K_s \times 1$	Disease similarity weight vector

- We aim to analyze the drug-disease network by minimizing the following objective: $J = J_0 + \lambda_1 J_1 + \lambda_2 J_2$
- The reconstruction loss of observed drug-disease associations:

 $J_0 = \|\Theta - U\Lambda V^T\|_F^2$ Similar Drugs/diseases (latent groups) have similar behaviors

- The reconstruction loss of drug similarities: $J_1 = \sum_{k=1}^{K_d} \omega_k \| D_k - UU^T \|_F^2 + \delta_1 \| \omega \|_2^2$ Reconstruct integrated drug/disease networks $J_2 = \sum_{l=1}^{K_s} \pi_l \| S_l - VV^T \|_F^2 + \delta_2 \| \pi \|_2^2$
- Putting everything together, we obtained the optimization problem to be resolved: min_{U,V,Λ,Θ,ω,π}J, subject to U≥0, V≥0, Λ≥0, ω≥0, ω^T1=1, π≥0, π^T1=1, P_Ω(Θ)= P_Ω(R)

BCD approach for solving the problem

 Block Coordinate Descent (BCD) strategy: The BCD approach works by solving the different groups of variables alternatively until convergence. At each iteration, it solves the optimization problem with respect to one group of variables with all other groups of variables fixed.

Algorithm 1: A BCD Approach for Solving Problem (11)

Require: $\lambda_1 \geq 0$, $\lambda_2 \geq 0$, $\delta_1 \geq 0$, $\delta_2 \geq 0$, $K_d > 0$, $K_s > 0$, $\{D_k\}_{k=1}^{K_d}$, $\{S_l\}_{l=1}^{K_s}$, R

1: Initialize $\omega = (1/K_d) \mathbf{1} \in \mathbb{R}^{K_d \times 1}, \pi = (1/K_s) \mathbf{1} \in \mathbb{R}^{K_s \times 1}$

2: Initialize U and V by performing Symmetric Nonnegative Matrix Factorization on $\tilde{D} = \sum_{k=1}^{K_d} \omega_k D_k$ and $\tilde{S} = \sum_{i=1}^{K_s} \pi_i S_i$.

3: while Not Converge do

- 4: Solve Θ as described in section 2 (as a constrained Euclidean projection)
- 5: Solve ω and π as described in section 3 (as a standard Euclidean projection onto a simplex)
- 6: Solve Λ as described in section 4 (as a nonnegative quadratic optimization problem) \neg
- 7: Solve U as described in section 5 (as a nonnegative quadratic optimization problem)
- 8: Solve V as described in section 6 (as a nonnegative quadratic optimization problem)

9: end while

Computational complexity is O(Rrmn), where R is the number of BCD iterations, and r is the average PGD iterations when updating Λ , U, and V.

Closed-form

solution

Solved by Projected

Gradient Descent

(PGD) method

Data Description

- Benchmark dataset was extracted from NDF-RT, spanning 3,250 treatment associations between 799 drugs and 719 diseases
- Three 799×799 matrices were used to represent drug similarities between 799 drugs from different perspectives
- Three 719×719 matrices were used to represent disease similarities between 719 human diseases from different perspectives

ROC comparisons of five drug repositioning approaches

Distribution of weights of the similarity weight vectors obtained by JMF

Top 10 drugs for diseases Alzheimer's Disease (AD) and Systemic Lupus Erythematosus (SLE)

(a) Top 10 drugs predicted for AD		(b) Top 10 drugs predicted for SLE					
Drug	Prediction Score	Clinical Evidence?		Drug	Prediction Score	ore Clinical Evidenc	
Selegiline*	0.7091			Desoximetasone	0.7409	No	
Carbidopa	0 6924	No	Repositioning	Azathioprine*	0.7269		
Amantadine	0.6897	No		Leflunomide	0.7078	Yes	
Procyclidine	0.6826	No		Fluorometholone	0.7054	No	
Valproic Acid*	0.6745			Triamcinolone*	0.6862		
Metformin	0.6543	Yes	candidated	Beclomethasone	0.6522	No	
Bexarotene	0.6426	Yes		Etodolac	0.6445	No	
Neostigmine	0.6385	No		Hydroxychloroquine*	0.6374		
Galantamine*	0.6348			Nelfinavir	0.6371	Yes	
Nilvadipine	0.6159	Yes		Mercaptopurine	0.6150	No	

* denotes the drug is known and approved to treat the disease

Summary of joint matrix factorization framework

- We proposed a general computational framework, to explore drug-disease associations from multiple drug/disease sources
- Our method could help generate drug repositioning hypotheses, which will benefit patients by offering more effective and safer treatments
- The computational framework and its solution can be used in other applications (gene-disease, drug-patient, etc.)

Zhang, P., Wang, F., Hu, J. Towards Drug Repositioning: A Unified Computational Framework for Integrating Multiple Aspects of Drug Similarity and Disease Similarity. AMIA, 2014.

Recent Applications in Biomedicine

- Similarity Network Fusion and Identification of Cancer Subtypes
- Joint Matrix Factorization and Drug Repositioning
- Nonnegative Matrix Tri-Factorization and Patient-Specific Data Fusion
 - Tensor Factorization and Patient Phenotyping

Network data integration

Patient-specific data fusion

Co-clustering: patients, genes, and drugs

Gligorijevic V et al. Patient-specific data fusion for cancer stratification and personalized treatment. PSB, 2016. Wang F, Li T, Zhang C. Semi-supervised clustering via matrix factorization. SDM, 2008.

Matrix models in biomedicine

Recent Applications in Biomedicine

- Similarity Network Fusion and Identification of Cancer Subtypes
- Joint Matrix Factorization and Drug Repositioning
- Nonnegative Matrix Tri-Factorization and Patient-Specific Data Fusion

Phenotyping from Electronic Medical Records (EMR)

Phenotype (American Heritage Dictionary)

 The observable physical or biochemical characteristics of an organism, as determined by both genetic makeup and environmental influences.

Why phenotyping from EMR

- Mapping noisy, incomplete, and potentially inaccurate patient representation from EMR to meaningful medical concepts Feature engineering
- Extracting clinical meaningful groups of patients from EMR Cohort generation

	Heart Failure Phenotype			
Diabetes Phenotype	Other forms of heart disease			
Diseases of other endocrine glands Complications of surgical and medical care	Complications of surgical and medical care Symptoms			
Chemistry Pathology and Laboratory Tests Organ or Disease Oriented Panels Hematology and Coagulation Procedures Surgical Procedures on the Cardiovascular System	Cardiovascular Procedures Hematology and Coagulation Procedures Evaluation and Management of Other Outpatient Services Surgical Procedures on the Cardiovascular System Chemistry Pathology and Laboratory Tests			

Ho J, Ghosh J, Sun J. Marble: High-throughput Phenotyping from Electronic Health Records via Sparse Nonnegative Tensor Factorization. KDD 2014.

Tensor representation for EMR

CP factorization for EMR

Ho J et al. Marble: High-throughput phenotyping from Electronic Health Records via sparse nonnegative tensor factorization. KDD 2014. Wang Y et al. Rubik: Knowledge guided tensor factorization and completion for health data analytics. KDD 2015.

A possible application of EHR-phenotyping

Ho J, Ghosh J, Sun J. Marble: High-throughput Phenotyping from Electronic Health Records via Sparse Nonnegative Tensor Factorization. KDD 2014.

Tucker factorization for pathology reports

Luo Y et al. Subgraph augmented non-negative tensor factorization (SANTF) for modeling clinical narrative text. *JAMIA* 22:1009-1019, 2015.

Comparison of tensor modeling and factorization schemes

Luo Y, Wang F, Szolovits P. Tensor factorization toward precision medicine. Brief Bioinform, 2016

Challenges and opportunities: multiscale networks

Topol E. Individualized Medicine from Prewomb to Tomb. *Cell* 157, 2014.

Dynamic network: timeline of individualized genomic medicine

During an individual's lifespan: from prewomb to tomb

Boland MR et al. Birth Month Affects Lifetime Disease Risk: A Phenome-Wide Method. JAMIA 2015.

Topol E. Individualized Medicine from Prewomb to Tomb. *Cell* 157, 2014.

Personalized multiscale networks to model dynamics of complex disease

Dudley J. Big data in biology and medicine. Retreived at www.aaas.org

Center for Computational Health @ IBM

Thank you!!!

