DATA MINING IN DRUG DISCOVERY AND DEVELOPMENT

Ping Zhang pzhang@us.ibm.com IBM T.J. Watson Research Center USA Lun Yang Lun.Yang@gmail.com GlaxoSmithKline USA

Outline

- Introduction of Drug Discovery and Development
- Motivation of Data Mining
- Case Study: Drug Repositioning
- Case Study: Real-World Evidence
- Data Sources for Data Mining Applications
- Challenges and Summary

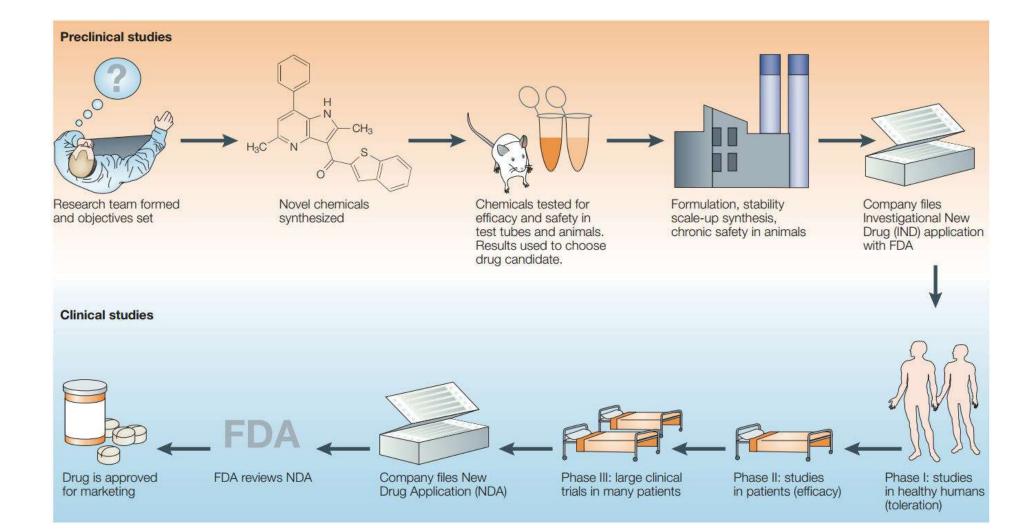
Outline

- Introduction of Drug Discovery and Development
- Motivation of Data Mining
- Case Study: Drug Repositioning
- Case Study: Real-World Evidence
- Data Sources for Data Mining Applications
- Challenges and Summary

Brief history of drug discovery and development

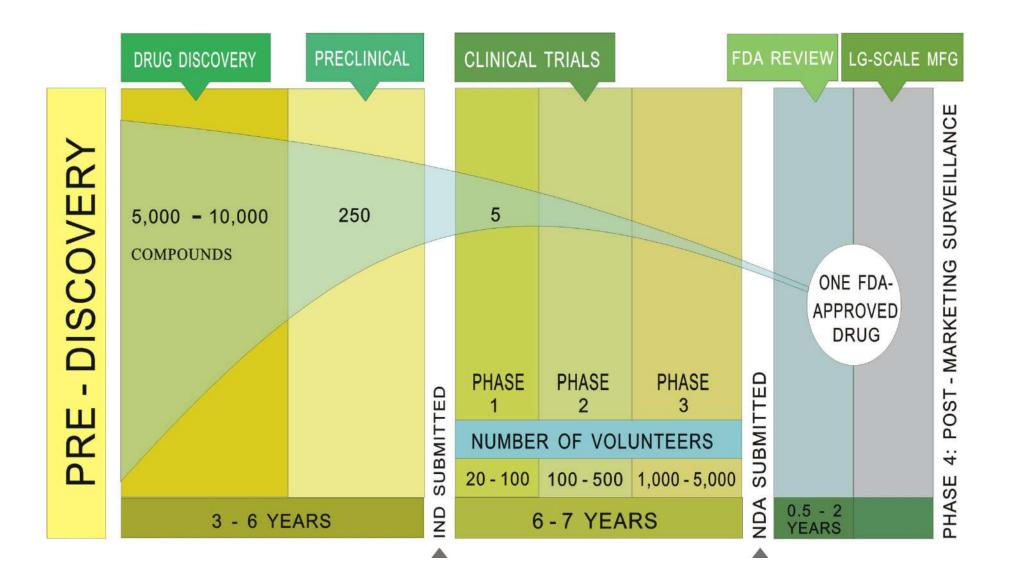
- Empirical up until 1960's
 - 14th–11th centuries BCE: herbal drugs, serendipitous discoveries
 - Late 1800's: major pharmaceutical companies, mass production
 - 1920's, 30's: vitamins, vaccines
 - 1930-1960: major discoveries (insulin, penicillin, ...)
- Rational 1960's to 1990's
 - Designing molecules to target protein active sites "lock and key"
 - Computational drug discovery
 - Biggest success HIV (Reverse transcriptase, protease inhibitors)
- Big Experiment 1990's to 2000's
 - High throughput screening
 - Microarray assays
 - Gene sequencing and human genome project
- Big Data 2010's onwards
 - Informatics-driven drug discovery
 - Everything is connected

Stages in the drug discovery and development process



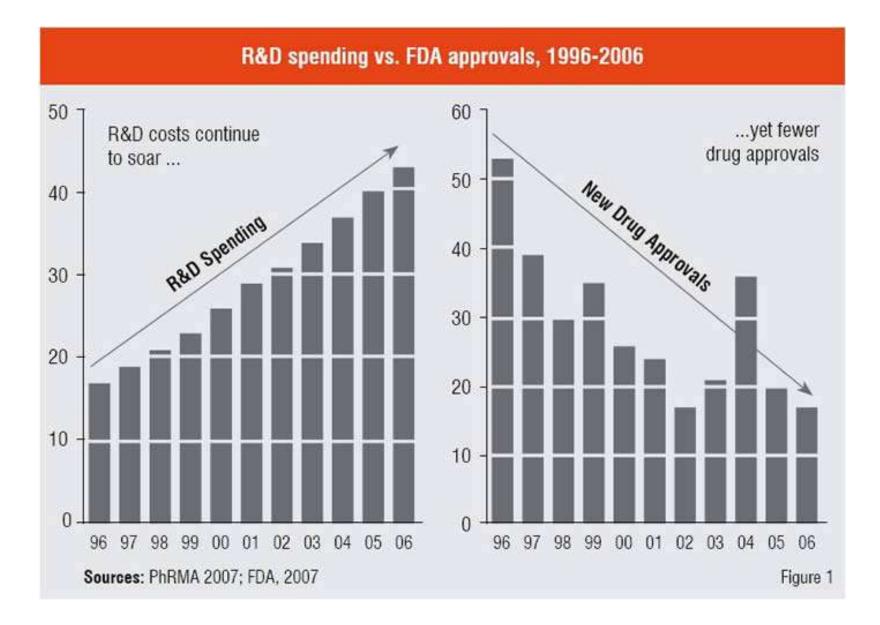
Lombardino JG, Lowe JA 3rd. Nat Rev Drug Discov. 2004 Oct;3(10):853-62.

Timescale in the drug discovery process

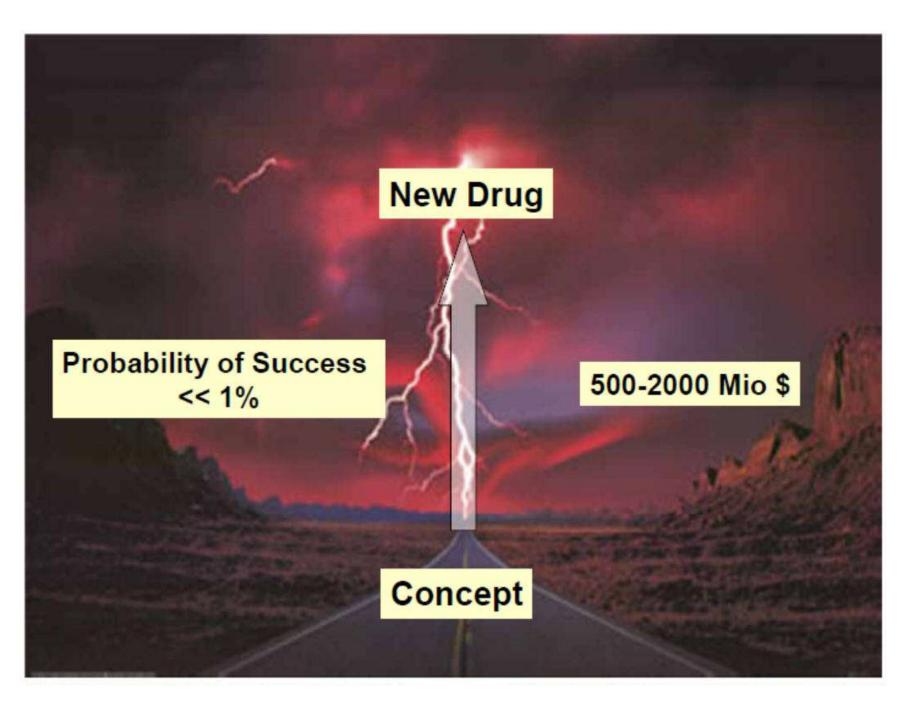


Available at http://www.innovation.org/drug_discovery/objects/pdf/RD_Brochure.pdf

Bottleneck in drug discovery



Traditional Drug Discovery Process



Outline

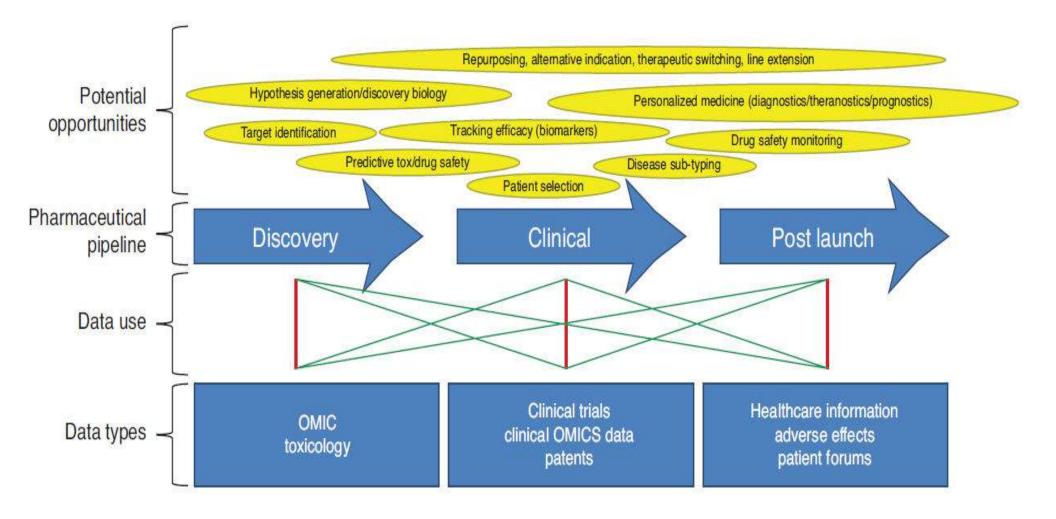
- Introduction of Drug Discovery and Development
- Motivation of Data Mining
- Case Study: Drug Repositioning
- Case Study: Real-World Evidence
- Data Sources for Data Mining Applications
- Challenges and Summary

Big Data in the public domain

- There is now an incredibly rich resource of public information relating compounds, targets, genes, pathways, and diseases. Just for starters there is in the public domain information on^{*}:
 - 48,777,362 compounds, 127,906,628 substances, 739,657 bioassays (PubChem)
 - 1552 FDA-approved small molecule drugs, 284 biotech drugs, 6009 experimental drugs (DrugBank)
 - 542,258 manually reviewed protein sequences, 51,616,950 un-reviewed protein sequences (Swiss-Prot/UniProtKB), 95,968 3D structures (PDB)
 - 22 million life science publications 1 million new each year (PubMed)
 - 160,781 clinical studies with locations in all 50 states and in 185 countries (ClinicalTrials.gov)
- Even more important are the relationships between these entities. For example a chemical compound can be linked to a gene or a protein target in a multitude of ways:
 - Co-occurrence in a paper abstract
 - Computational experiment (docking, predictive model)
 - System association (e.g. involved in same pathways cellular processes)
 - Statistical relationship

* All databases were accessed on 02/08/2014

Why Data Mining is appealing



Buchan NS et al. Drug Discov Today. 2011 May;16(9-10):426-34.

Why Drug Discovery and Development is appealing

- Drug discovery is highly data driven and data are increasingly becoming public available
 - NIH has started ambitious extramural funding programs to support academic-based drug discovery programs recently
 - Pharms begin to make the trove of detailed raw data underlying its clinical trials systematically available to researchers
- Having ample data, bring challenging problems, demanding more knowledge
- Spans full data analytics cycles
 - Data collection, data cleansing, data semantics, data integration, data representation
 - Model inference, model selection, modal average, model interpretation
- We see many different data types
 - Vector, semi-structured, time-series, spatial-temporal, images, video, hypertext, literature
- Data analytics and data management challenges are from all aspects
 - Large volume, high dimensional, high noise, large amount of missing values, non iid data, structured input and output, unlabeled data
 - Multi-instance (label, class, task)

Outline

- Introduction of Drug Discovery and Development
- Motivation of Data Mining
- Case Study: Drug Repositioning
- Case Study: Real-World Evidence
- Data Sources for Data Mining Applications
- Challenges and Summary

Examples of drug repositioning New uses for old drugs

Drug	Original indication	New indication	
Viagra	Hypertension	Erectile dysfunction	
Wellbutrin	Depression	Smoking cessation	
Thalidomide	Antiemetic	Multiple Myeloma	

0

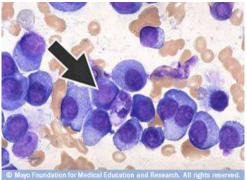
EDITORIAL

HOME

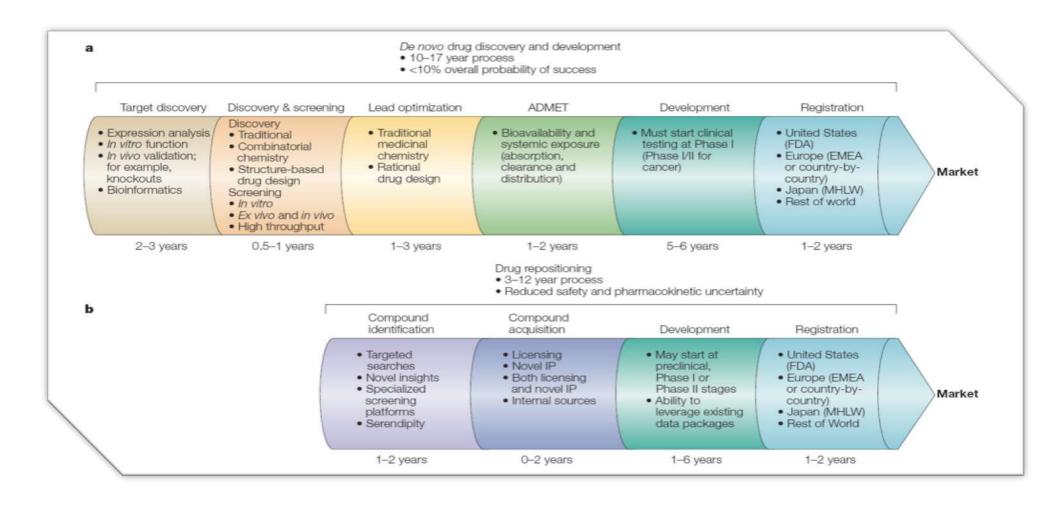
Thalidomide — A Revival Story

Noopur Raje, M.D., and Kenneth Anderson, M.D. N Engl J Med 1999; 341:1606-1609 November 18, 1999

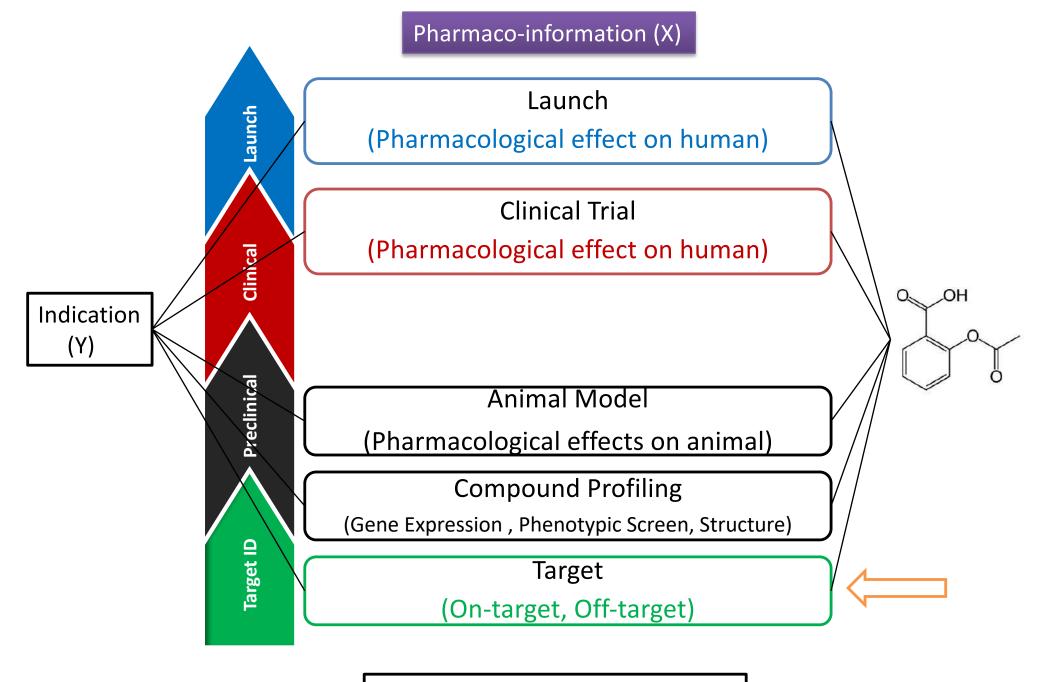
ARTICLES *



Meet the unmet medical needs efficiently



Dependent and Independent Variables in Drug Repositioning



Y (indication) = f (X1, X2, ..., Xn)

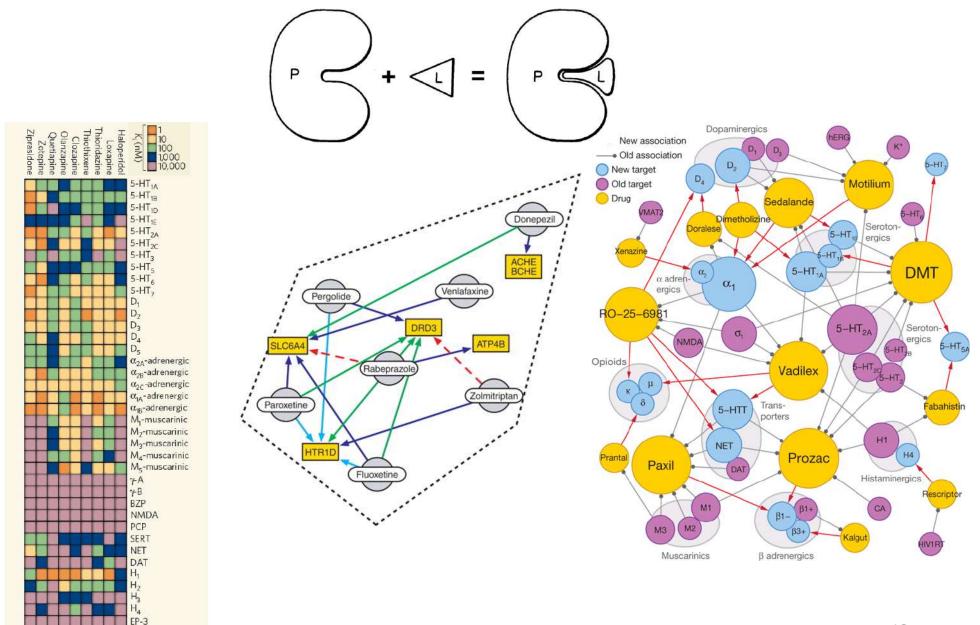
Target

(On-target, Off-target)

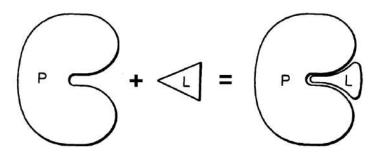
Chemical-Protein Interactome (CPI)

- Introduction of the CPI
- Generate CPI
- CPI data-process
- Case study
 - Drug Repositioning based on CPI

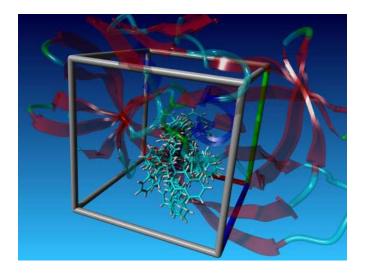
Chemical-protein interactions



The DOCK



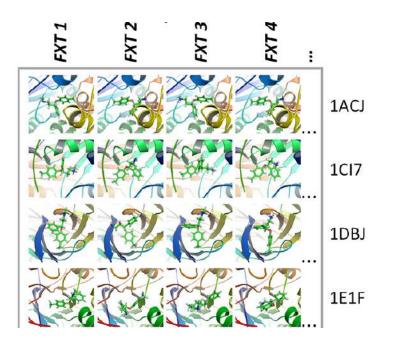
- A program used to simulate the chemical-protein interactions and to measure the interaction strength
- Provide the theoretical binding conformation of the drug's binding to protein
- A lower docking score means a higher binding strength

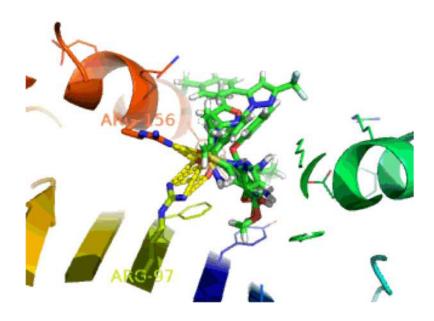


$$E_{\text{inter}} = \sum_{i=1}^{lig} \sum_{j=1}^{rec} \left(\frac{A_{ij}}{r_{ij}^a} - \frac{B_{ij}}{r_{ij}^b} + 332.0 \frac{q_i q_j}{Dr_{ij}} \right),$$

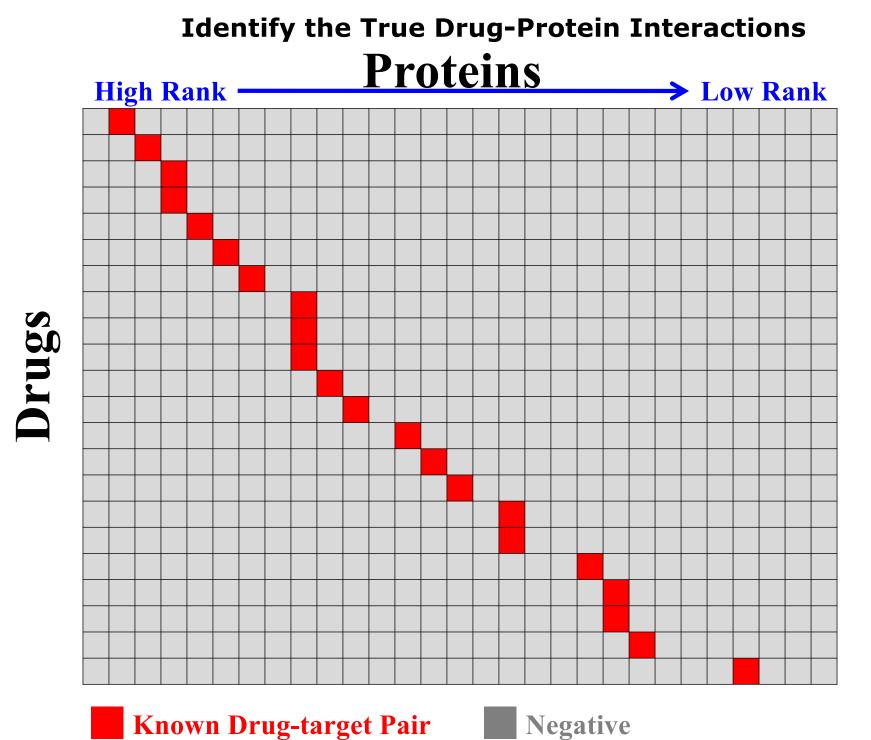
van der Waals and electrostatic interaction

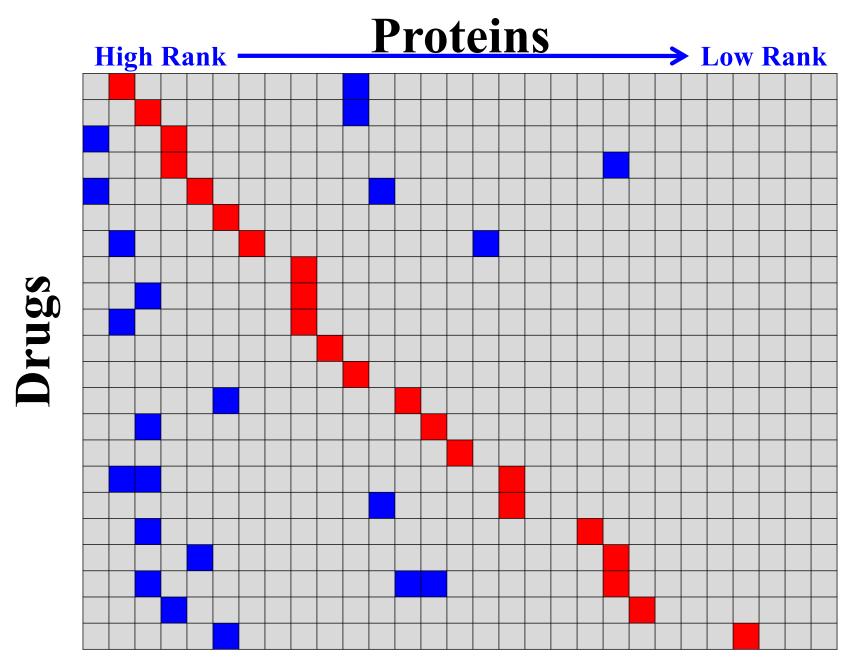
Binding conformation in Chemical-Protein Interactome (CPI)



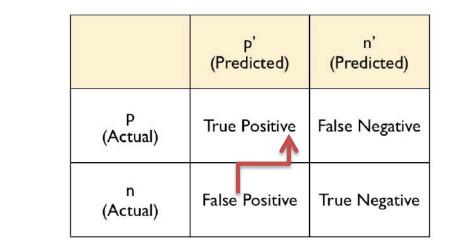


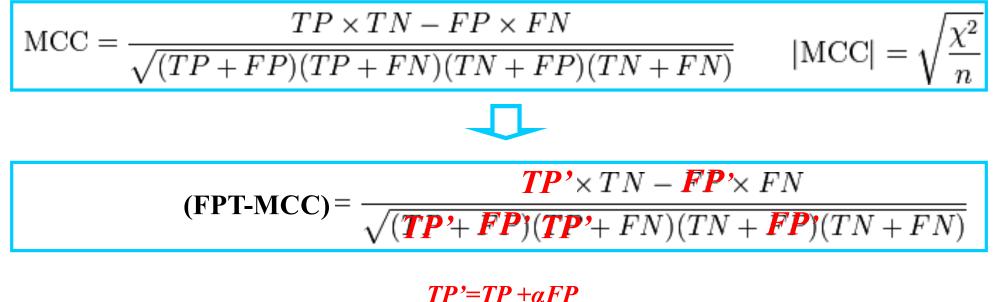
Direct binding model of sulfonamides - MHC I (Cw*4) interactions





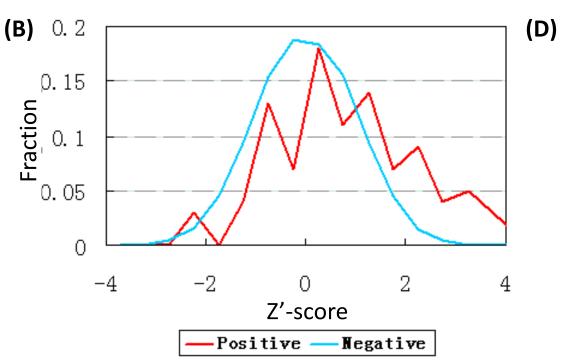
False Positive - Tolerant MCC (FPT-MCC)

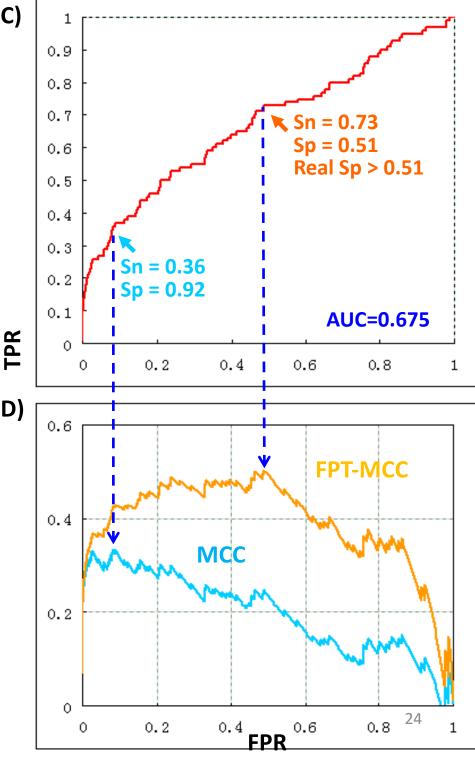




 $FP'=(1-\alpha)FP$

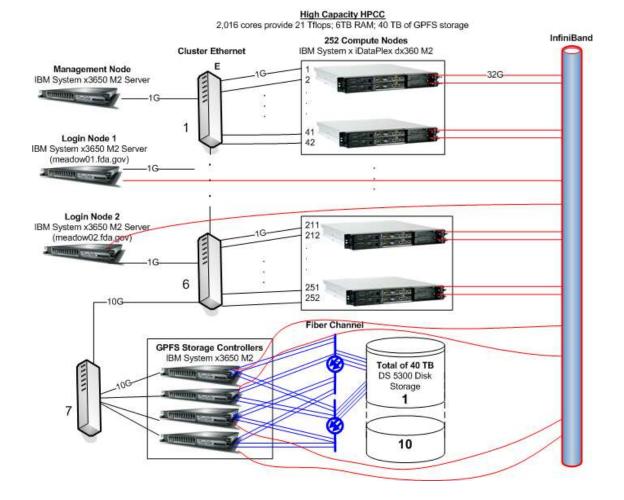
(C) **(A)** 100 Chemicals – 100 Proteins 0.9 0.8 Negative Class Positive 0.7 0.6 10,000 Volume 100 0.5 0.4 Mean 1 0 0.3 Sn = 0.36 St. Dev 1.5 0.2 Sp = 0.92 0.1



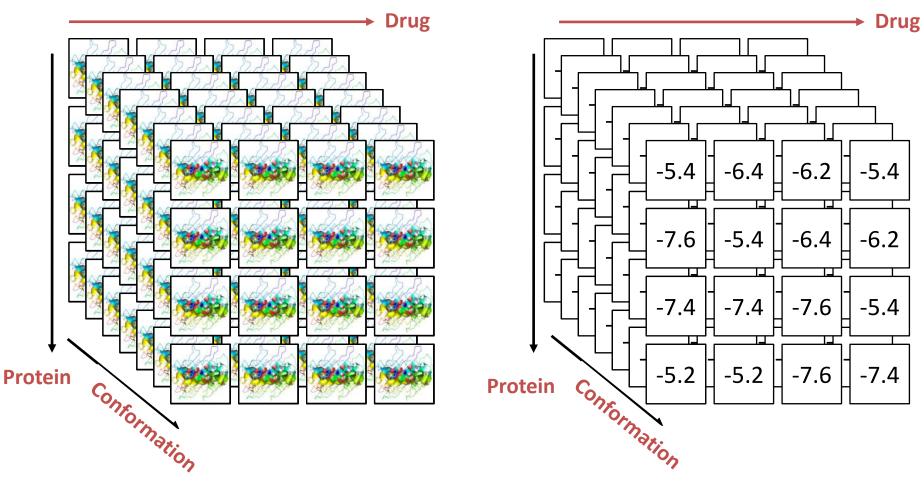


Resource Specifications for Docking

- Blue Meadow cluster
 - IBM iDataPlex dx360
 M2 Server machines
 & Sun Grid Engine,
 PBS
 - 252 nodes x 8 cores =
 2016 cores
 - 6TB RAM, or 24 GB per node
 - Memory distributed
 between nodes &
 shared within nodes



CPU time for constructing CPI

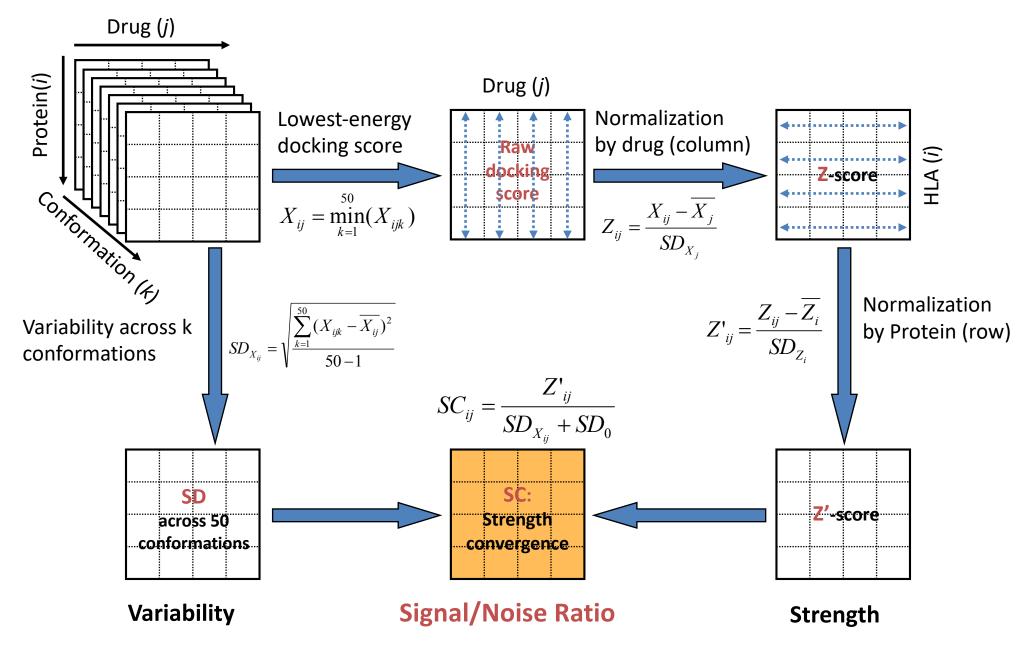


For each drug-protein pair : ~200 seconds per CPU core / 10M 3D conformation and scoring data

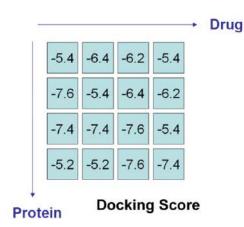
If 15,000 PDB human protein * 10,000 FDA approved drug = 150,000,000 drugprotein

If on IBM Cluster, ~ 172 days / 1,430 TB data

Docking scores processing – two directional Ztransformation (2DIZ)



Rational of using 2DIZ



Two Directional Z-transformation (2DIZ) of Docking Scores X_{ij}

$$Z_{ij} = \frac{X_{ij} - \overline{X_j}}{SD_{X_j}} \qquad \qquad Z'_{ij} = \frac{Z_{ij} - \overline{Z_i}}{SD_{Z_i}}$$

Linear Model of the Docking Scores

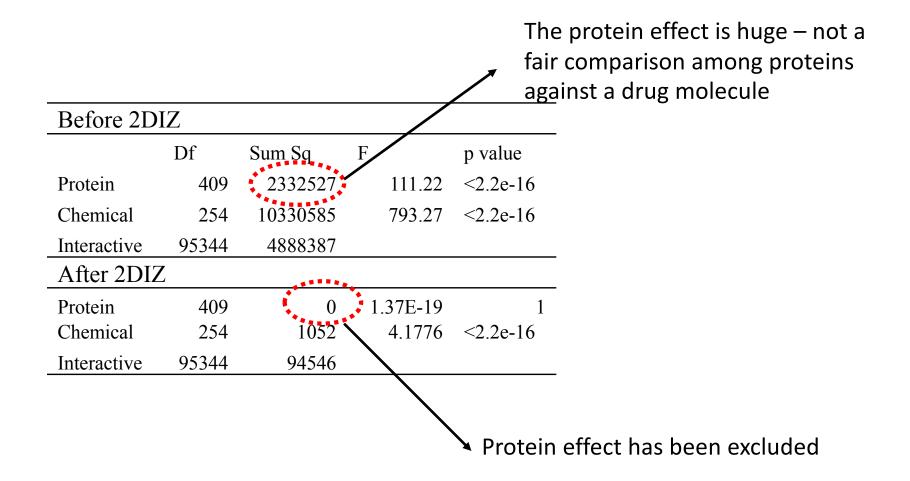
$$X_{ij} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij}, \qquad b = \frac{\sum_{q=1}^n \sum_{k=1}^m (\alpha\beta)_{kq}}{mn}$$

$$Z'_{ij} = \frac{-b\sqrt{n-1}}{\sqrt{(n-1)b^2 + [(\alpha\beta)_{ii} - b]^2}} \quad (i \neq j), \text{ when } (m \to +\infty, n \to +\infty)$$

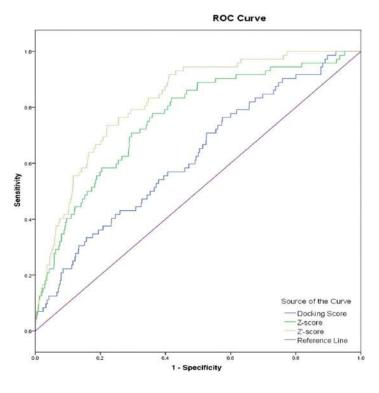
$$Z'_{ij} = \left[(\alpha\beta)_{ij} - b \right] \sqrt{\frac{(n-1)}{(n-1)b^2 + \left[(\alpha\beta)_{ij} - b \right]^2}} (i=j),$$

when $(m \to +\infty, n \to +\infty),$

ANOVA of the chemical-protein interactive effect before and after 2DIZ



Improved performance of the docking scores after applying 2DIZ



Benchmark structural model set:

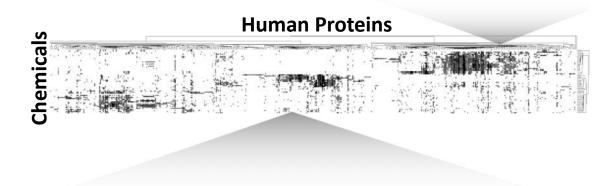
100 pockets with their embedded ligands

High variability in ligand structures

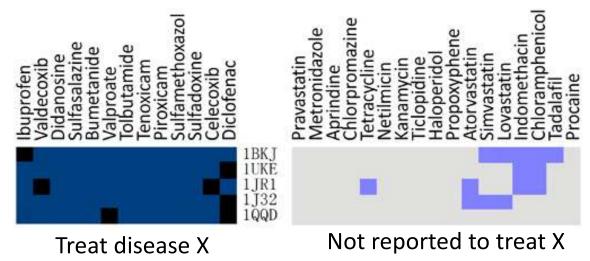
				Asymptotic 95% Confidence	
Test Result				Interval	
Variable(s)	AUC	Std. Error ^a	Asymptotic Sig. ^b	Lower Bound	Upper Bound
Docking Score	.623	.033	.000	.558	.687
Z-score	.759	.028	.000	.703	.815
Z'-score	.823	.021	.000	.781	.865

Drug Repositioning based on CPI

 New indications are usually caused by unexpected chemical protein interactions on off-targets

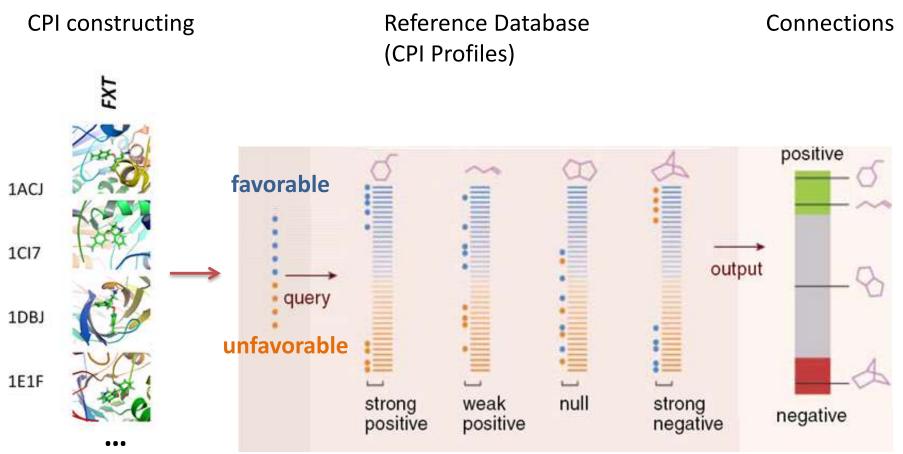


 The interaction profiles could be used as high dimensional representative of the drugs' pharmacological effect



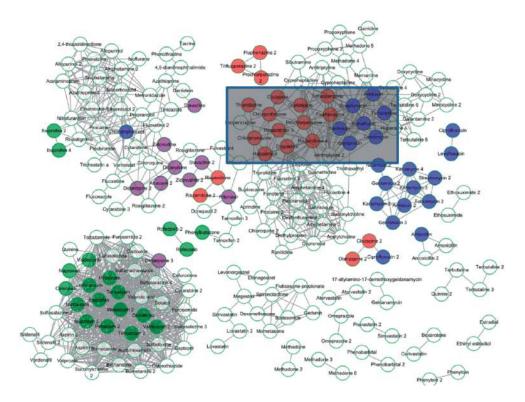
http://cpi.bio-x.cn/drar/

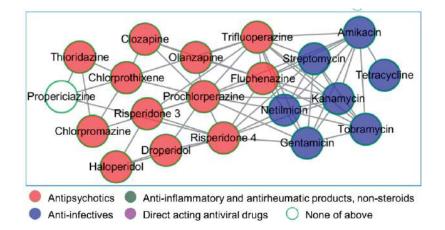
Drug Repositioning based on drugdrug connectivity



Luo, H,..., Yang, L. Nucl. Acids Res. (2011) Web Server Issue; doi: 10.1093/nar/gkr299 Figure Modified from: J. Lamb, ..., E.S. Lander, T.R. Golub. Science. 2006 313(5795):1929-35.

CPI-based drug-drug connectivity network





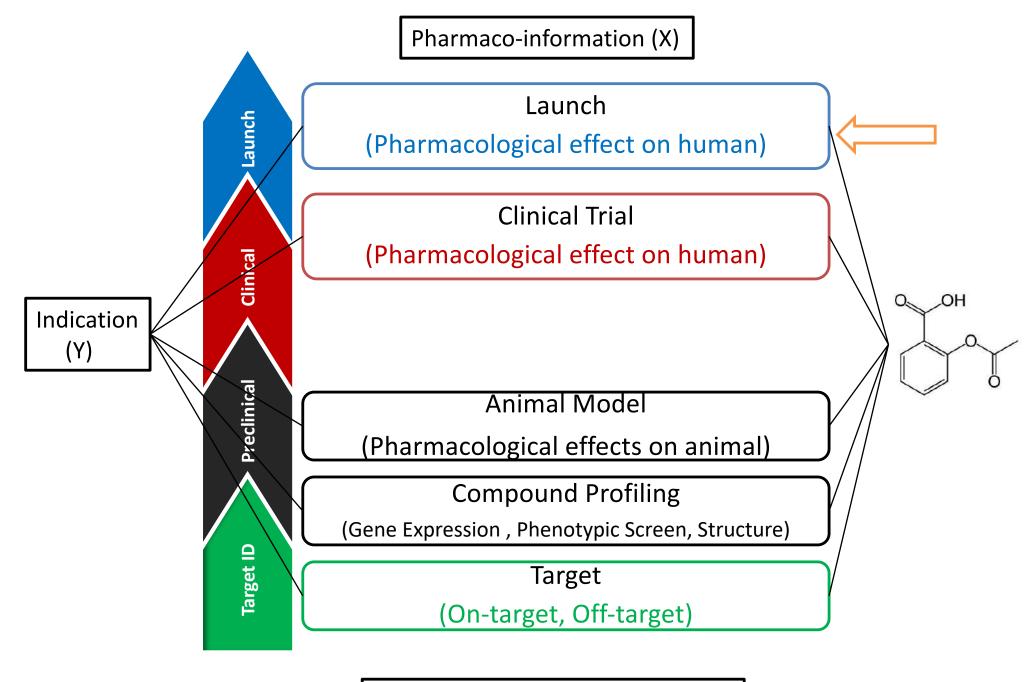
Have successfully predicted the connections between anti-psychotics and anti-infectives

Rani Basu L, et al. Microbiol. Res. 2005;160:95-100. Chan YY, et al. Antimicrob. Agents Chemother. 2007;51:623

CPI related resources

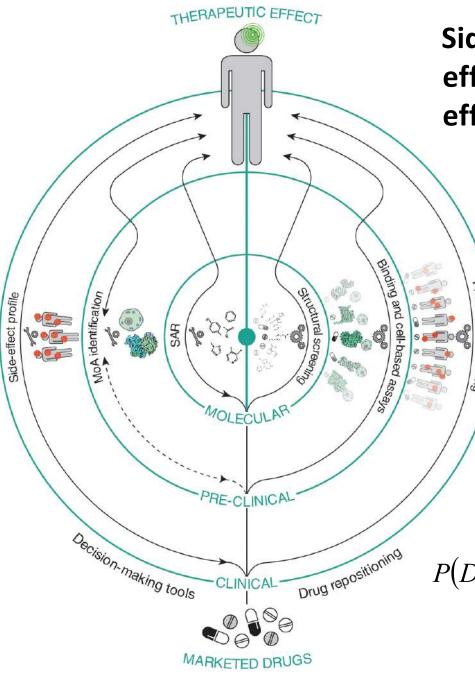
- Chemical structure
 - STITCH <u>stitch.embl.de</u>
 - DrugBank <u>www.drugbank.ca</u>
- Protein Structure
 - Protein Data Bank <u>www.pdb.org</u>
 - PDBbind <u>www.pdbbind-cn.org</u>
- Docking programs
 - DOCK
 - Autodock
 - Glide
- CPI servers
 - Drug Repositioning CPI <u>http://cpi.bio-x.cn/drar/</u>
 - CPI for Drug-Drug Interaction prediction <u>http://cpi.bio-x.cn/ddi/</u>

Dependent and Independent Variables in Drug Repositioning



Y (indication) = f (X1, X2, ..., Xn)

Rationale of Using Pharmacological Effects in Drug Repositioning



Duran-Frigola M. & Aloy P. Genome Med. 2012 4(1):3

Side-effects (SE) and therapeutic effects are clinical phenotypic effects of drug treatment

> They may associate with each other via underlying mechanism

Clinical phenotypic information comes from patients, not animals

Mimics a human phenotypic 'assay' May have less translational issue

Quantitative Rational

$$\max(P(D_{i} | se_{1}, se_{2}, ..., se_{m})), i \in (|D|)$$
posterior

$$P_{i} | se_{1}, se_{2}, ..., se_{m}) = \frac{P(se_{1}, se_{2}, ..., se_{m} | D_{i})P(D_{i})}{P(se_{1}, se_{2}, ..., se_{m})}$$

$$P(se_1, se_2, ..., se_m | D_i) = \prod_{j=1}^m P(se_j | D_i)$$

• Identification of the disease-side effect associations

Retrieving side-effect/disease information from drug label and PharmGKB

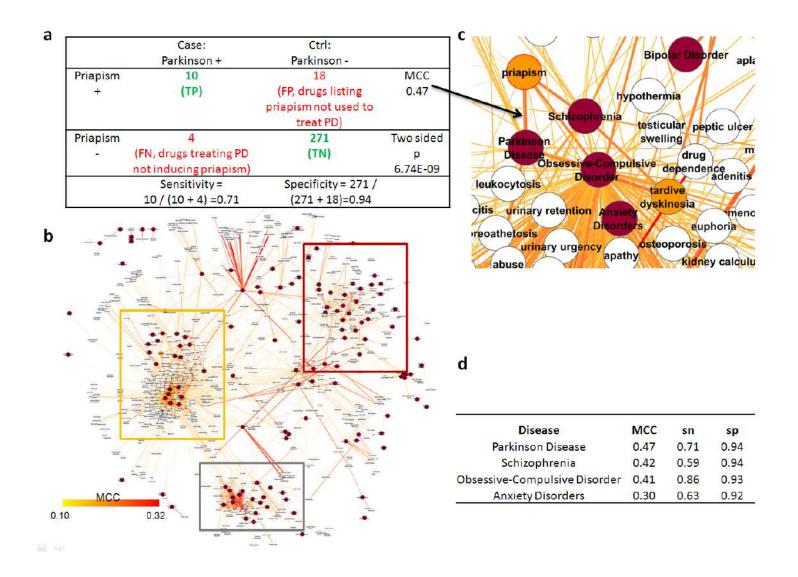
glimepiride						
Clinical PGx	PGx Research	Overview	Properties	Pathways	ls Related To	Downloa
Related Gen	ies and Targets	Relate	d Drugs and	l Interaction	Related D	iseases
Curated	I Information ?					
viewlege	end					
Disease					Relations	hip
Diabetes	<u>s Mellitus</u>				PD	
Diabetes	s Mellitus, Type 2				PD PK	
	glimepiride Clinical PGx Related Gen Curated View lege Disease Diabetes	Clinical PGx PGx Research	glimepiride Clinical PGx PGx Research Overview Related Genes and Targets Related Curated Information ? View legend Disease Diabetes Mellitus	glimepiride Clinical PGx PGx Research Overview Properties Related Genes and Targets Related Drugs and Curated Information ? Viewlegend Disease Diabetes Mellitus	glimepiride Pharma Clinical PGx PGx Research Overview Properties Pathways Related Genes and Targets Related Drugs and Interactions Curated Information ? View legend Disease Diabetes Mellitus	glimepiride Pharmacogenomics Know Clinical PGx PGx Research Overview Properties Pathways Is Related To Related Genes and Targets Related Drugs and Interactions Related D Curated Information ? View legend Relations Dispetes Mellitus PD

SIDE EFFECT

Skin			
Allera	gic skin reactions, e.g., pruritus, erythema, urticaria, vasculitis, and morbilliform or		
macu	lopapular eruptions, occur in less than 1% of treated patients. Such mild reactions may		
devel	op into serious reactions sometimes progressing to shock. These may be transient and mSE -	> drug	-> Disease 🗲
disap	pear despite continued use of glimepiride if skin reactions persist, the drug should be		
disco	ntinued. Although there have been no reports for <mark>glimepiride</mark> , porphyria cutanea tarda		38

Bork, et al. 2008 – 2010; Altman, et al. 2001-2012

Identification of the disease-side effect associations

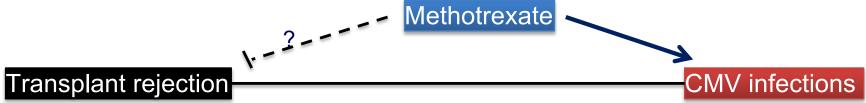


584 side effects; 145 diseases; 3175 informative drug-SE associations

Yang, L. Agarwal, P. PLoS ONE, 2011 DOI: 10.1371/journal.pone.0028025

Examples of disease-side effect associations with interpretable biological meanings

Disease Class	Disease	Side Effect	MCC	sn	sp	p value	Predictions
Circulation	Stroke	Positive ANA	0.46	0.47	0.98	1.8E-15	statins, ramipril
System							
Immune System	Transplant	Cytomegalovirus	0.75	0.75	0.99	3.5E-06	methotrexate
	rejection	infection					
Metabolite disease	Diabetes	Porphyria	0.44	0.50	0.98	8.8E-06	valproic acid, pyrazinamide,
	Mellitus						naproxen, estradiol
Psychiatric	Depressive	Delusions	0.46	1.00	0.91	1.1E-08	cabergoline, memantine,
disease	Disorder						pergolide
Psychiatric	Depressive	Hyperacusis	0.55	0.88	0.96	9.0E-09	phenytoin, modafinil
disease	Disorder						
Neoplasms	Neoplasms	Constitutional	0.50	0.56	0.94	2.6E-18	nevirapine
		symptoms					



 Drug Repositioning based on Side Effects (DRoSEf) for marketed drugs

AUCs of 10-fold cross validations across 145 diseases using multiple SE features

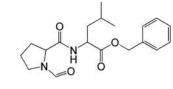
Disease	AUC	Disease	AUC
Amyotrophic Lateral Sclerosis	1	Influenza, Human	0.997
Anemia	1	Leukemia, Lymphocytic, Chronic, B-Cell	1
Arthritis	1	Liver Neoplasms	1
Asthma	0.959	Migraine without Aura	1
Cough	0.998	Myopathy, Central Core	1
Dementia	1	Non-small cell lung cancer	0.986
Diabetic Nephropathies	1	normal tension glaucoma	1
Diarrhea	0.982	Osteonecrosis	0.993
Esophogeal Neoplasms	0.983	Osteoporosis, Postmenopausal	1
estrogen-dependent carcinogenesis	1	Pain	0.983
Gastroesophageal Reflux	0.997	Parkinson Disease	0.959
Glioblastoma	1	Peripheral Nervous System Diseases	0.957
Glomerulosclerosis	0.997	Psoriasis	0.962
Heart Diseases	1	Rectal Neoplasms	0.983
Hyperlipidemias	0.981	Rheumatic Diseases	

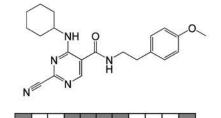
...

• DRoSEf for clinical molecules

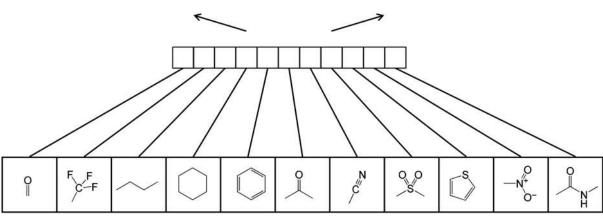
Quantitative Structure Activity Relationship (QSAR) Modeling

- Drug-like properties
 - Octanol-water partition coefficient (logP)
 - Hydrogen bond donors
 - Hydrogen bond acceptors
 - Molecular Mass



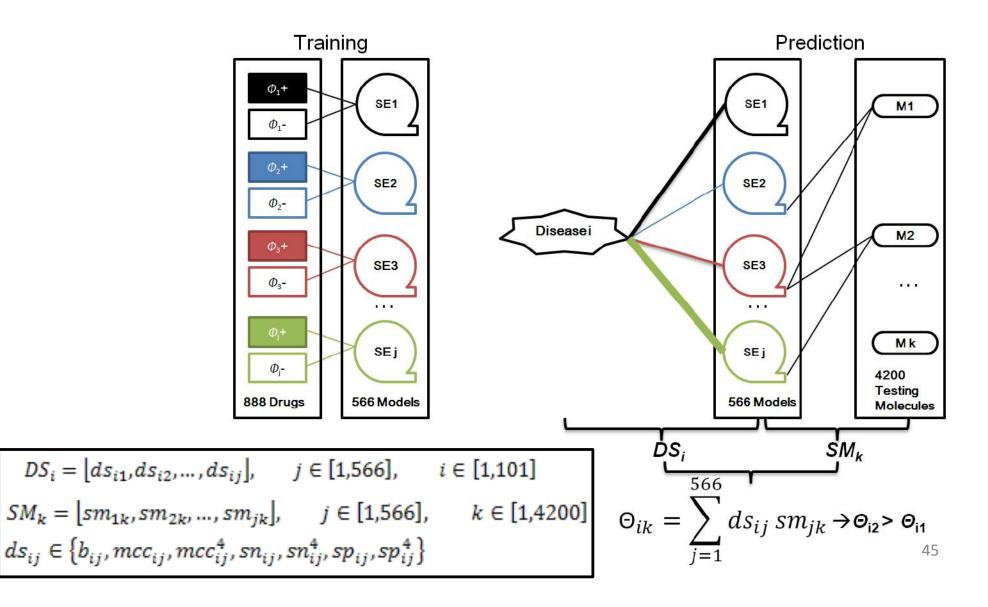


• Structural Signature

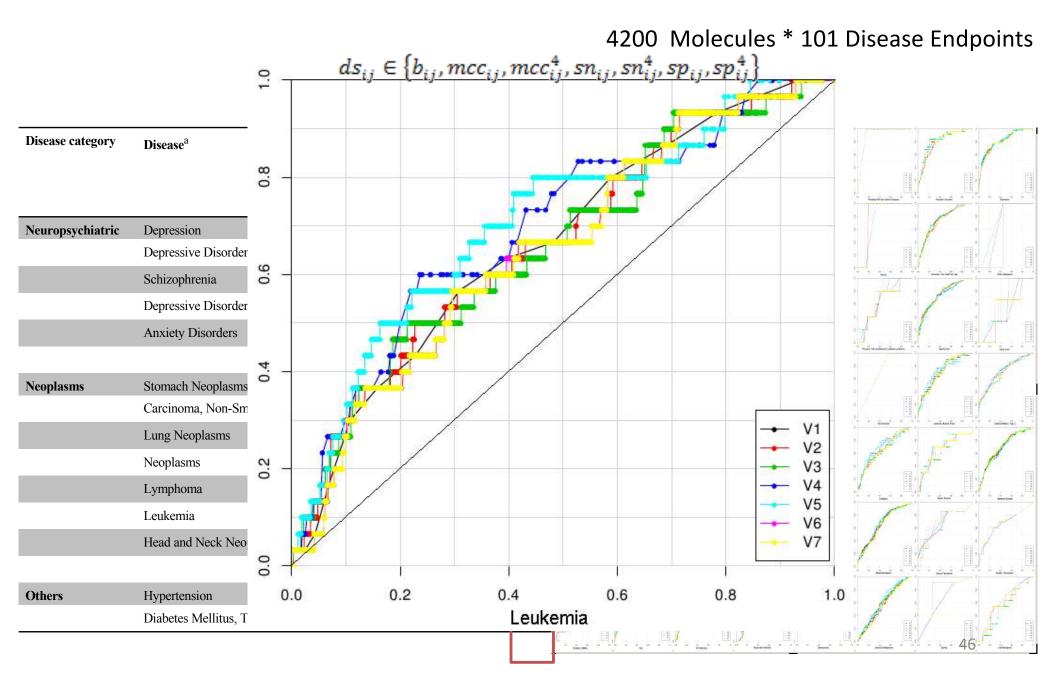


DRoSEf for clinical molecules

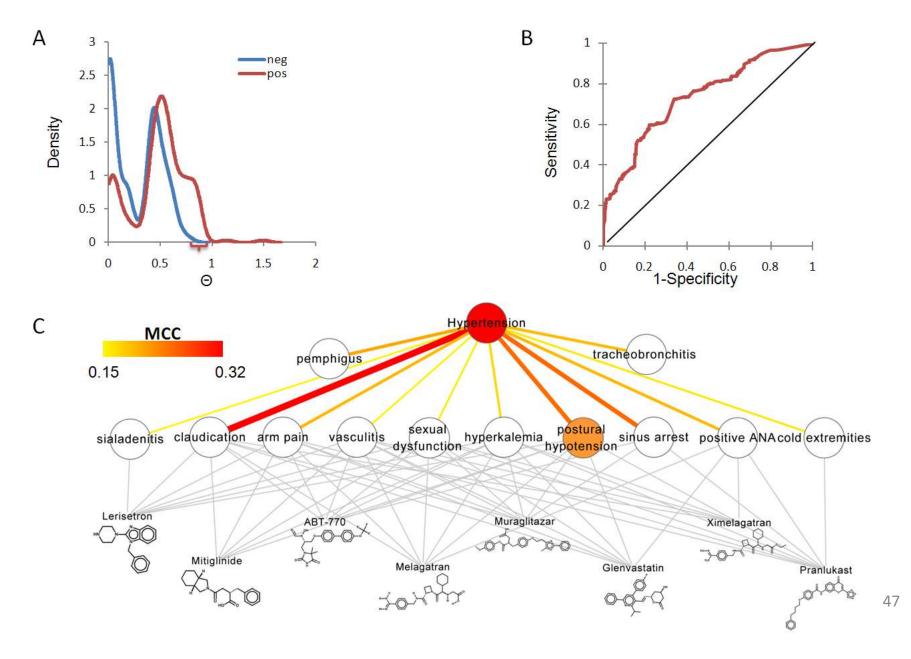
• 4,200 clinical molecules that are indicated for at least one of 101 diseases



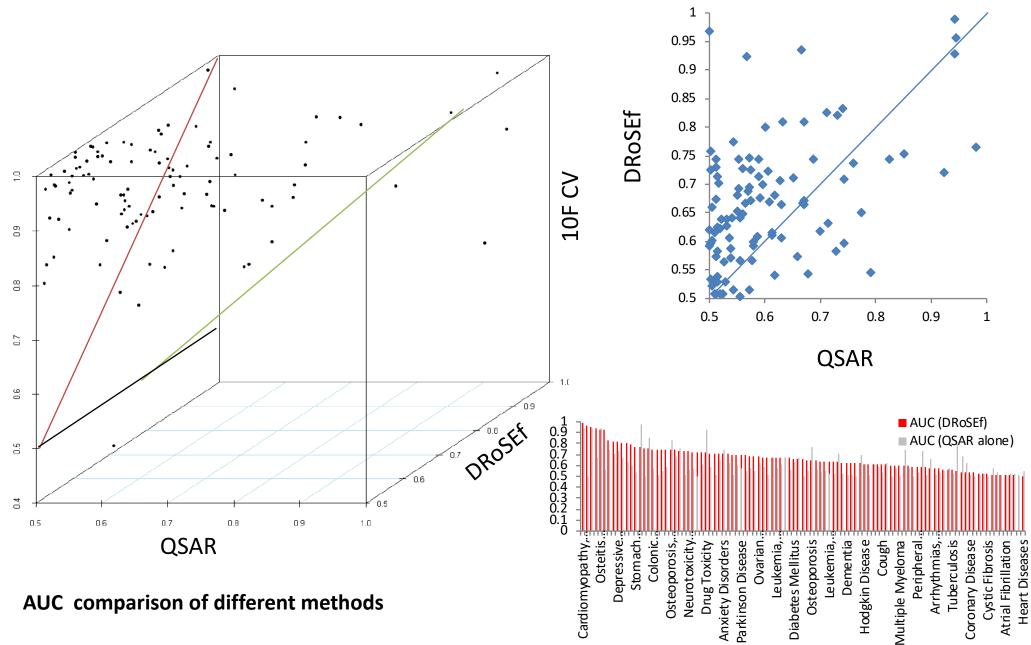
Prediction results for clinical molecules



Case Study: Predict drugs' repositioning potential for hypertension



DRoSEf vs. QSAR alone



Take-home message

- Drug indication can be suggested only based on clinical side-effects
- DRoSEf may also suggest the neglected pathogenesis of disease, inspiring the basic research of the human diseases
 - For example, studying *porphyria* may help discover potential new mode of action for diabetes therapy

Summary of the data-mining in drug repositioning

- The dependent variable is disease (Y)
- Independent variables (X)
 - Chemical-protein interactome profile
 - Side Effect
- Prediction
 - The predicted results should have biomedical explaination

Side effect related resources

- Side effect
 - SIDER <u>http://sideeffects.embl.de/</u>
 - FAERS
- Drug-disease relationship
 - PharmGKB <u>www.Pharmgkb.org</u>
 - Pipline[®]
 - Metabase[®] Thomson Reuters
- Molecular fingerprints
 - Daylight
 - CDK
 - MACCS

Outline

- Introduction of Drug Discovery and Development
- Motivation of Data Mining
- Case Study: Drug Repositioning
- Case Study: Real-World Evidence
- Data Sources for Data Mining Applications
- Challenges and Summary

Where do "data" come from?

۲

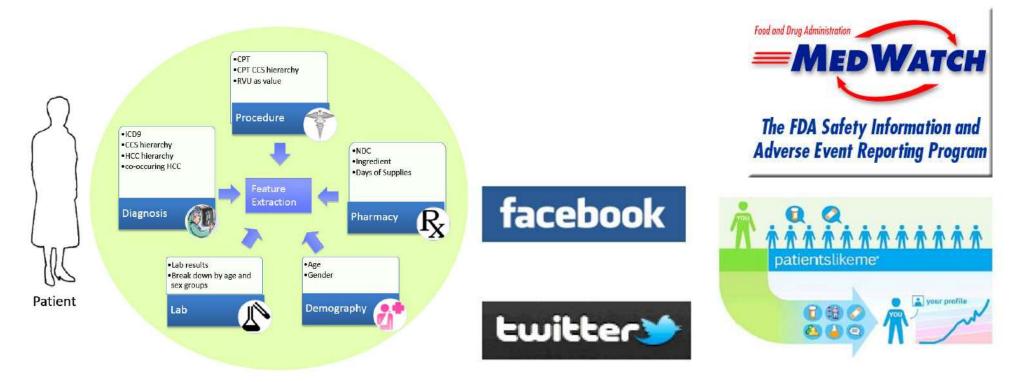
۲

۲

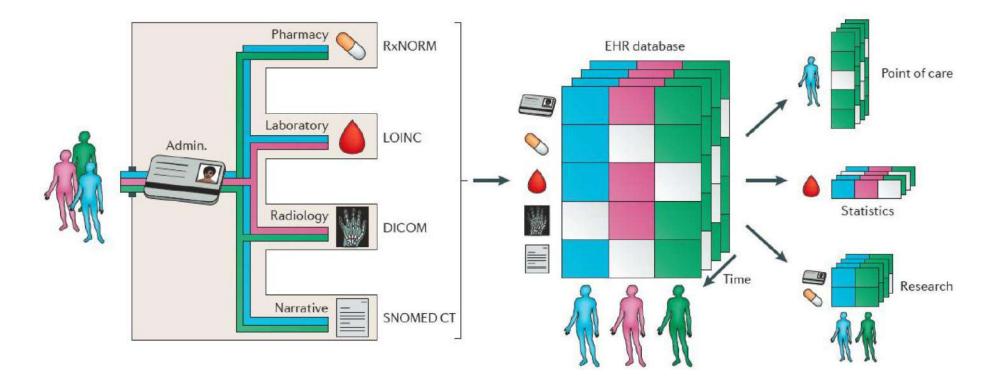
Pre-clinical studies Provides a first assessment of the expected safety and efficacy of a compound using proven animal models Phase I Safety focus and the beginnings of efficacy, dose ranging, and IND tolerability Phase II Demonstrate safety and efficacy in well controlled (generally NDA Filed masked) randomized studies sufficient for market authorization Phase III Expanded trials in different use situations or populations NDA Approved Phase IV Post marketing safety or new indications **Real World Evidence** Evaluations of safety, effectiveness and outcomes in "routine" clinical practice

What is "Real World Evidence"

- RWE is clinical observations other than randomized clinical trials (RCT).
 - RCT are expensive and in far smaller scale
- RWE is observations on human in the clinical stage
 - less of a translational issue
 - "Omics" information (genomics, proteomics, metabolomics, etc.) is not yet widely available in everyday clinical practice
 - Other than "omics", numerous external factors (e.g., environment, diet and exercise) affect response to medication
- RWE is not only vast but also varied in type and source: electronic medical records (EMR), claims data, and even social media.



EHR data collection and analysis



Effectively integrating and efficiently analyzing various forms of healthcare data over a period of time can answer many of the impending healthcare problems.

Jensen PB, Jensen LJ, Brunak S. Nat Rev Genet. 2012 May 2;13(6):395-405.

Diagnosis data - ICD codes

- ICD stands for International Classification of Diseases
- ICD is a hierarchical terminology of diseases, signs, symptoms, and procedure codes maintained by the World Health Organization (WHO)
- In US, most people use ICD-9, and the rest of world use ICD-10
- Pros: Universally available
- Cons: medium recall and medium precision for characterizing patients

Hypertensive disease (401-405)

- (401 🚱) Essential hypertension
 - (401.0 🗗) Hypertension, malignant
 - (401.1🚱) Hypertension, benign
 - (401.9 🚱) Hypertension, Unspecified
- (402 🚱) Hypertensive heart disease
- (403 🚱) Hypertensive renal disease
 - (403.0 🗗) Malignant hypertensive renal disease
 - (403.1🚱) Benign hypertensive renal disease
- (404 🚱) Hypertensive heart and renal disease
- (405 🗗) Secondary hypertension
 - (405.0 🚱) Malignant secondary hypertension
 - (405.01 🗗) Hypertension, renovascular, malignant
 - (405.1 🚱) Benign secondary hypertension
 - (405.11 🗗) Hypertension, renovascular benign

Procedure data - CPT codes

- CPT stands for Current Procedural Terminology created by the American Medical Association
- CPT is used for billing purposes for clinical services
- Pros: High precision
- Cons: Low recall

Codes for surgery: 10021 - 69990

- (10021 10022) general
- (10040 19499) integumentary system
- (20000 29999) musculoskeletal system
- (30000 32999) respiratory system
- (33010 37799) cardiovascular system
- (38100 38999) hemic and lymphatic systems
- (39000 39599) mediastinum and diaphragm
- (40490 49999) digestive system
- (50010 53899) urinary system
- (54000 55899) male genital system
- (55920 55980) reproductive system and intersex
- (56405 58999) female genital system
- (59000 59899) maternity care and delivery
- (60000 60699) endocrine system
- (61000 64999) nervous system
- (65091-68899) eye and ocular adnexa
- (69000 69979) auditory system

Lab results

- The standard code for lab is Logical Observation Identifiers Names and Codes (LOINC[®])
- Challenges for lab
 - Many lab systems still use local dictionaries to encode labs
 - Diverse numeric scales on different labs
 - Often need to map to normal, low or high ranges in order to be useful for analytics
 - Missing data
 - not all patients have all labs

Hematology ABG Analysis

Specimen: Arterial blood Date and time specimen gathered: 07/21/2010 21:42pm

Blood Gases:

Dioou Gases.			
Acid/ Base:	Results:	Reference Range:	Flag:
(pH	7.27	7.35-7.45	(L)
PCO2	48mmHg	35-45 mmHg	(H)
pO2	92mmHg	80-100 mmHg	1
HCO3	25 mEq/L	24-26 mEq/L	
O2 sat	97%	95-100%	

Medication

- Standard code is National Drug Code (NDC) by Food and Drug Administration (FDA), which gives a unique identifier for each drug
 - Not used universally by EHR systems
 - Too specific, drugs with the same ingredients but different brands have different NDC
- RxNorm: a normalized naming system for generic and branded drugs by National Library of Medicine
- Medication data can vary in EHR systems
 - can be in both structured or unstructured forms
- Availability and completeness of medication data vary
 - Inpatient medication data are complete, but outpatient medication data are not
 - Medication usually only store prescriptions but we are not sure whether patients actually filled those prescriptions

Clinical notes

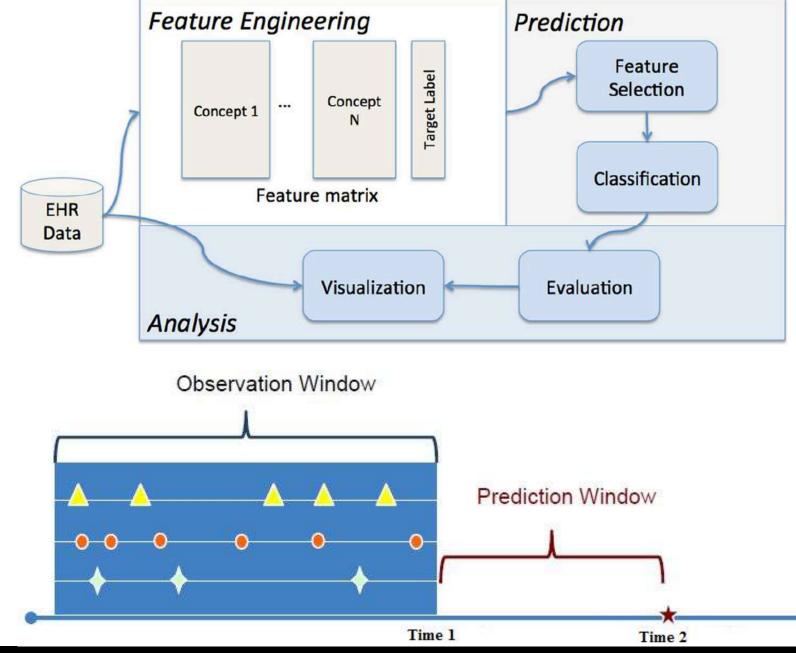
- Clinical notes contain rich and diverse source of information
- Challenges for handling clinical notes
 - Ungrammatical, short phrases
 - Abbreviations
 - Misspellings
 - Semi-structured information
 - Copy-paste from other structure source
 - Lab results, vital signs
 - Structured template:
 - SOAP notes: Subjective, Objective, Assessment, Plan

Enter case	note
<-Back	Post the note Check spelling Client: 9019 - Elinor Dashwood
TX plans	Staff: JF - Ferrara, Jessica Program: LB - Long Beach - Ocean
Enter note	Lookup previous notes Medications Billing information
Activity	y: [003 - CLINICAL VISIT > 30 MINU] ? Date: [06/24/2004]
Duration	1 2 • 15 • Time: 1:00 PM ?
Contac	t O - Other Location: 03 - Main site
	? • Yes C No Supervising physician: JF - Ferrara, Jessica ?
Goal type	e: None Goal Objective Goal-library
Collaterals	s: 0 Status: Complete Secondary services Pre-fill manager
Narrative:	Wiley • IMA-Write
Client a	rrived to discuss previously established goal:
Contract Contract of the	sychological energy and return to premorbid levels of activity, , mood, and goal-directed behavior.
	eported that her speech rate increases as she feels stressed.

Strengths and weakness of data classes within EHRs

	ICD codes	CPT codes	Laboratory Data	Medication records	Clinical Documentation
Availability in EHR systems	Near-universal	Near-universal	Near-universal	Variable	Variable
Recall	Medium	Poor	Medium	Inpatient: High Outpatient: Variable	Medium
Precision	Medium	High	High	Inpatient: High Outpatient: Variable	Medium-High
Fragmentation effect	Medium	High	Medium-High	Medium	Low-Medium
Query method	Structured	Structured	Mostly structured	Structured, text queries, and NLP	NLP, text queries, and rarely structured
Strengths	-Easy to query -Serves as a good first pass of disease status	-Easy to query -High precision	-Value depends on test -High data validity	Can have high validity	Best record of what providers thought
Weaknesses	-Disease codes often used for screening when disease not a ctually present -Accuracy hindered by billing realities and clinic workflow	-Most susceptible to missing data errors (e.g., performed at another hospital) -Procedure receipt influenced by patient and payer factors external to disease process	-May need to aggregate different variations of the same data elements -Normal ranges and units may change over time	-Often need to interface inpatient and outpatient records -Medication records from outside providers not present -Medications prescribed not necessary taken	-Difficult to process automatically -Interpretation accuracy depends on assessment method -May suffer from significant "cut and paste" -Not universally available in EHRs -May be self-contradictory
Summary	Essential first element for electronic phenotyping	Helpful addition if relevant	Helpful addition if relevant	Useful for confirmation and a marker of severity	Useful for confirming common diagnoses or for finding rare ones

Denny JC. PLoS Comput Biol. 2012;8(12):e1002823.

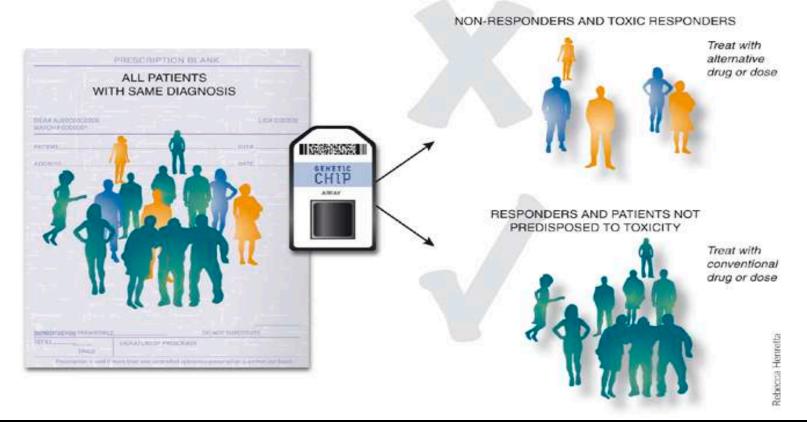


Application 1: Predictive Modeling Pipeline

More details and publications found at: http://www.research.ibm.com/healthcare/

Application 2: moving towards personalized medicine

- Personalized Medicine: the right patient with the right drug at the right dose at the right time.
 - (for patients) the end of one size fits all drugs would result in safer and more effective treatments
 - (for doctors) reduce wasted time for patients and resources with futile treatments
 - (for pharms) lower cost marketing due to targeted patients, faster clinical trials, less focus on animal trials



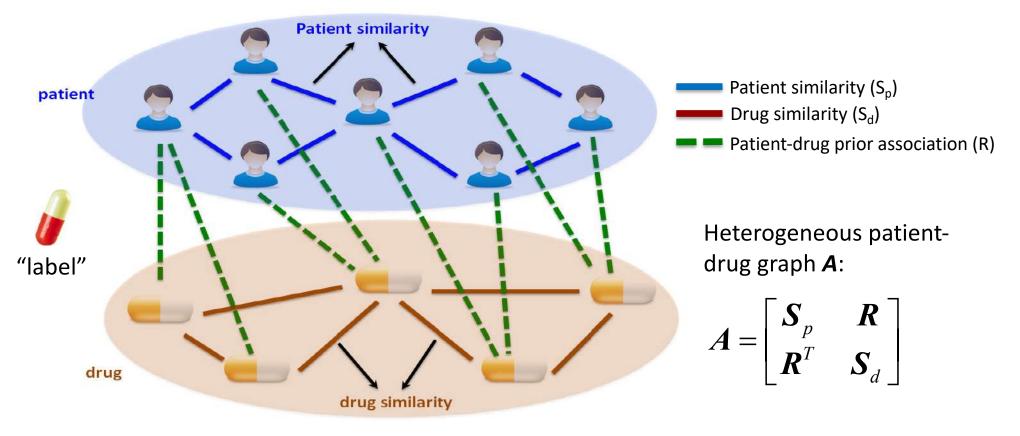
Patient similarity and drug similarity analytics

- Patient Similarity analytics: Find patients who display similar clinical characteristic to the patient of interest
- Drug Similarity analytics: Find drugs which display similar pharmacological characteristic to the drug of interest

How to leverage both patient similarity and drug similarity for personalized medicine?

Heterogeneous graph for drug personalization

- Drug personalization problem: whether drug A is likely to be effective for specific patient B. To take into consideration the specific condition of patient B as well as the characteristics of drug A, we should leverage the information of:
 - The patients who are clinically similar to patient B
 - The drugs which are similar to drug A
 - Prior associations between patients and drugs, which are measured by diagnosis of patients and therapeutic indications of drugs



Label propagation method

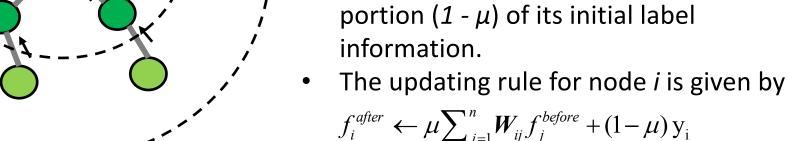
For each drug d, we constructed a corresponding effectiveness vector (i.e., known but not completed "label" vector) y=[y1, y2, ..., yn, yn+1, ..., yn+m]^T, where

[1 (k = 1, 2, ..., n), if d is an effective treatment for patient k

$$y_k = \begin{cases} 1 \ (k = n + 1, n + 2, ..., n + m), \text{ if } d \text{ is the } (k - n) \text{-th drug} \end{cases}$$

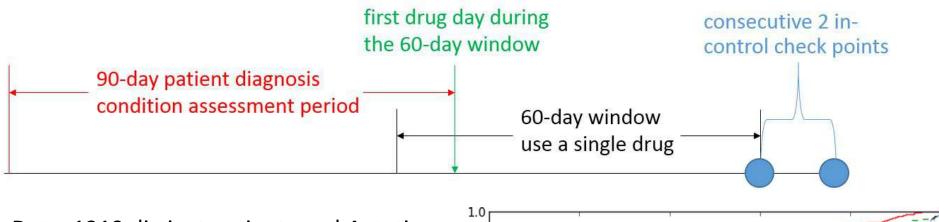
0, otherwise

- **W** is a normalized form of the similarity matrix **A**.
- In each propagation iteration, the estimated score of each node "absorbs" a portion (μ) of the label information from its neighborhood, and retains a portion (1 - μ) of its initial label information.



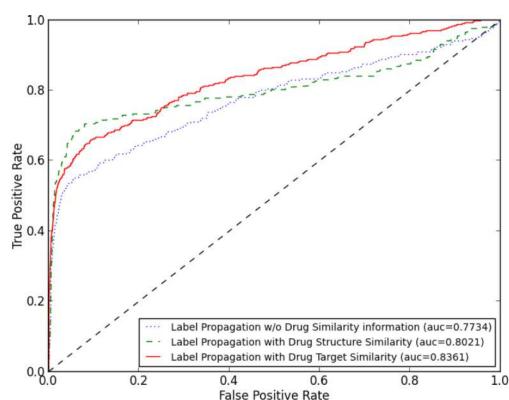
Consider the initial condition is $f^0 = y$, we have the equation $f^t = (\mu W)^{t-1} y + (1 - \mu) \sum_{i=0}^{t-1} (\mu W)^i y$ $f^* = \lim_{t \to \infty} f^t = (1 - \mu) (I - \mu W)^{-1} y$ f^- the possibility when a drug is effective for a patient

Experimental results of personalized treatments for hyperlipidemia



Data: 1219 distinct patients and 4 statin cholesterol-lowering drugs from a realworld EHR

Drug	Patient #
Atorvastatin	97
Lovastatin	221
Pravastatin	24
Simvastatin	877



Zhang P et al. Translational Bioinformatics (TBI), 2014.

Adverse drug reactions (ADRs)

- Post-approval ADRs remain a significant source of mortality and morbidity around the world
 - 2 million potentially preventable injuries, hospitalizations, and deaths each year in US alone
 - Associated cost estimated at \$75 billion annually

The New Hork Eimes

F.D.A. Issues New Alerts About Cholesterol Drugs

By GARDINER HARRIS Published: February 29, 2012

CORRECTION APPENDED

Federal health officials on Tuesday added new safety alerts to the prescribing information for statins, the cholesterol-reducing medications that are among the most widely prescribed drugs in the world, citing rare risks of memory loss, diabetes and muscle pain.

Merck Pulls Arthritis Drug Vioxx from Market

by RICHARD KNOX

September 30, 2004 12:00 AM ET

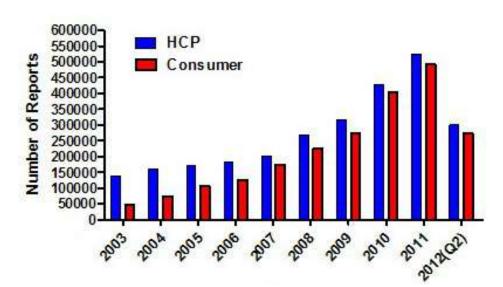
Pharmaceutical giant Merck & Co. is pulling its arthritis drug Vioxx from the market after a study confirmed earlier concerns that it raises the risk of heart problems, including heart attacks and stroke. Vioxx is currently used by 2 million people worldwide and has been used by more than 84 million people around the world, according to Merck.

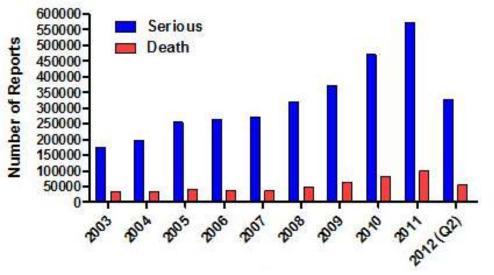
Statins are considered some of the safest drugs

- More than 140,000 cases of serious heart disease
- \$4.85 billion for legal claims from US citizens

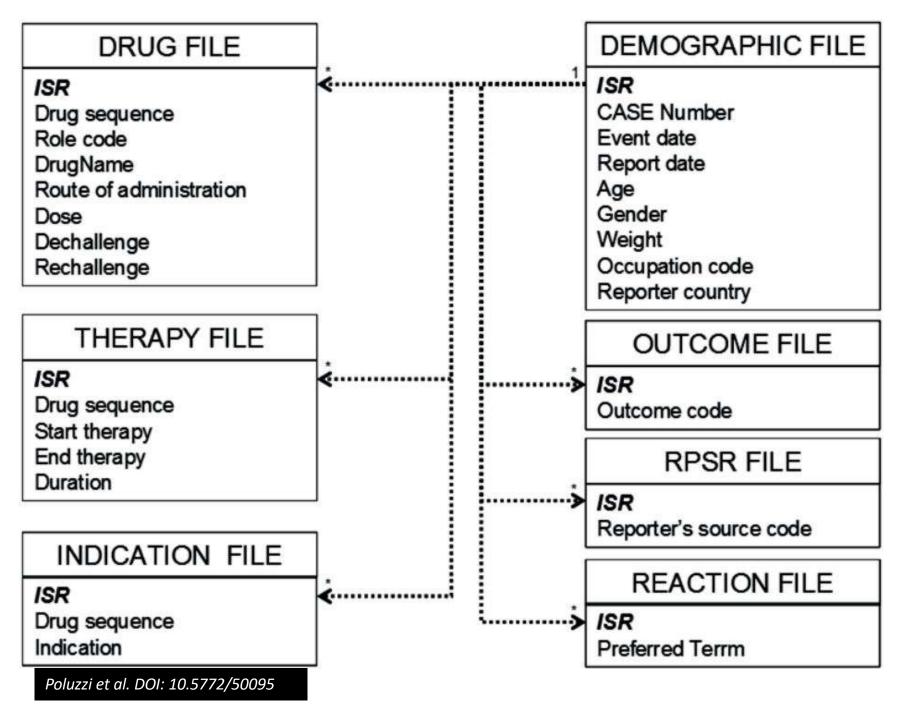
FDA Adverse Event Reporting System (AERS)

- FDA Adverse Event Reporting System (AERS)
 - FDA has maintained AERS since 1968
 - Spontaneous reports of suspected ADRs collected from healthcare professionals, consumers, and pharms
 - Data (from Jan 2004 to Apr 2013) is publicly available at FDA's website!
- Over 5 million reports collected so far:
 - patient: age, sex, weight, country
 Often sparsely collected
 - drugs they are taking
 - diseases they were being treated for
 - the adverse events that occurred to that patient



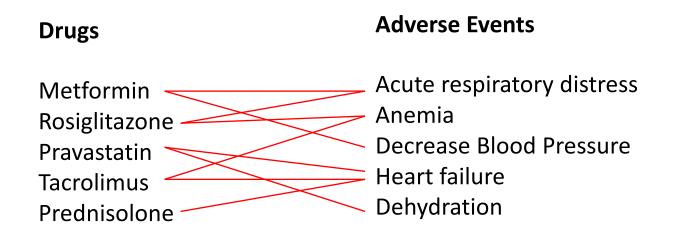


FDA AERS database structure



Interpreting those AERS reports is hard

- Many drugs, many adverse events
 - what causes what?
 - Most of these red lines are false which are true?



- Data mining (signal detection) algorithms for AERS
 - Quantify "unexpectedness": to identify drugs that have a greater proportion of a particular event compared to the proportion seen for other drugs
 - Sampling variance
 - Underreporting
 - Over reporting
 - Selection biases
 - Causative covariates other than drug under analysis

Disproportionality analysis

	reports	wae reports w/o	ae Total	
reports w drug	а	b	a+b	
reports w/o drug	С	d	c+d	
Total	a+c	b+d	a+b+c	:+d
Measure of asso	ciation	Formula		Probabilistic interpretation
Relative reportir	ng (RR) ¹	$\frac{a(a+b+c+d)}{(a+c)(a+b)}$		$\frac{\Pr(ae \mid drug)}{\Pr(ae)}$
Proportional rep rate ratio (PRR)	oorting	$\frac{a(c+d)}{c(a+b)}$		$\frac{\Pr(ae \mid drug)}{\Pr(ae \mid \sim drug)}$
Reporting odds ((ROR)	ratio	ad cb		$\frac{\Pr(ae \mid drug) \Pr(\sim ae \mid \sim drug)}{\Pr(\sim ae \mid drug) \Pr(ae \mid \sim drug)}$
Information component (IC) ²		$\log_2 \frac{a(a+b+c+d)}{(a+c)(a+d)}$		$\log_2 \frac{\Pr(ae \mid drug)}{\Pr(ae)}$

1. The RR, when implemented within an empirical Bayesian framework, is known as empirical Bayes geometric mean (EBGM); 2. The IC is a logarithmic RR metric that is implemented in a Bayesian framework.

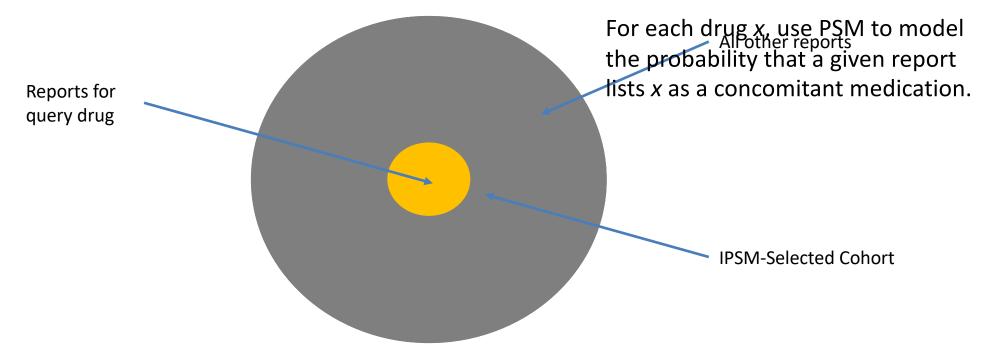
- Modern signal detection algorithms (e.g., EBGM, IC) could address sampling variance
 - Estimate confidence intervals (CIs) for disproportionality statistics
 - Dampen drug-event signals that have little evidence to support them
- How to address selection biases?

Selection biases in AERS reports

- Selection biases introduce "synthetic associations"
 - (e.g.) from concomitant drug use (co-Rx effect)
 - drugs co-prescribed with Vioxx more likely to be associated with heart attacks
 - (e.g.) from indications (indication effect)
 - drugs given to diabetics more likely to be associated with hyperglycemia
 - (e.g.) co-Rx effect and indication effect extend to other covariates
 - Patients reported to be taking a cholesterol-lowering agent are more likely to be older, and this may cause these drugs to be synthetically associated with agerelated effects, such as hypertension or myocardial infarction (age bias).
- Propensity score matching (PSM) corrects for bias of MEASURED covariates
 - Identify matched controls for the studied cases in observational clinical studies
 - Model the likelihood of a case being selected based on the covariates
 - PS = Estimated Pr(Exposed+| covariates)~ age + sex + weight +
 - Match each case with one or more controls with the same likelihood
 - However, PSM requires the covariates to be both known and measured; neither parameter is guaranteed to be present in AERS

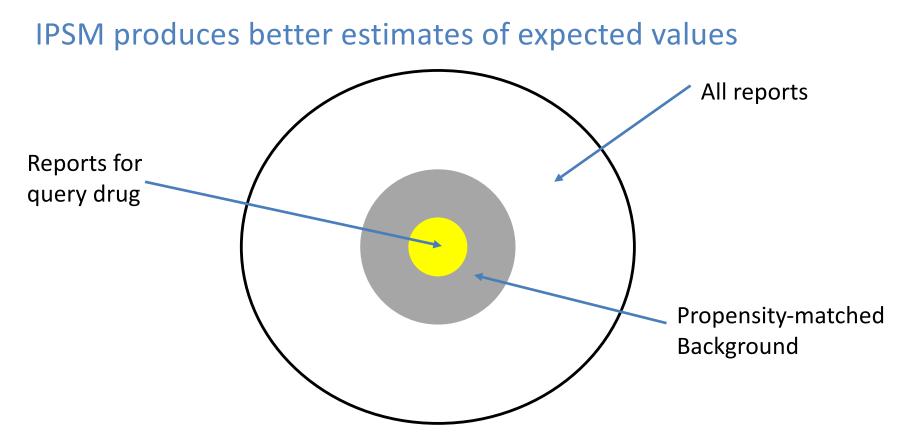
Implicit Propensity Score Matching (IPSM)

- Invented by Tatonetti NP et al. *Sci Transl Med*. 2012;4(125):125ra31.
- Assumes combination of co-reported drugs and co-indications describes all patient covariates. Hypothesize many confounders correlate with these key variables and do not need to be modeled.



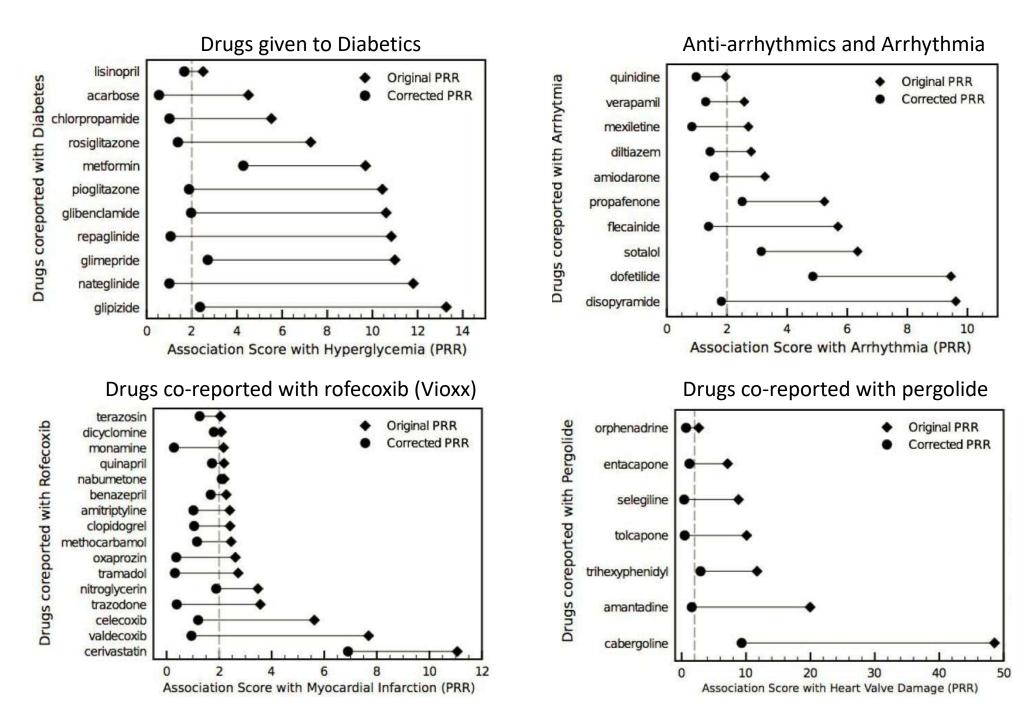
- First, reduce to only those reports that have co-prescribed prescriptions listed
- Second, reduce to only those reports that have correlated indications listed

Takes advantage of co-Rx and indication variables likely to co-vary with unmeasured covariates

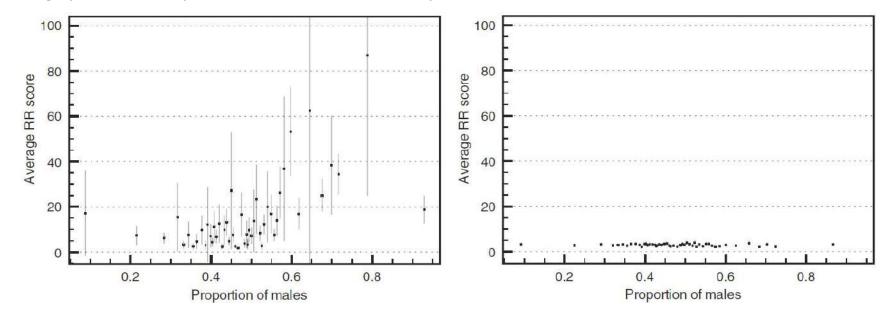


- Example: Reporting of hyperglycemia with diabetes drugs
- **Observed** reporting frequency: 17.7%
- Expected Estimates:
 - Entire database expected frequency: 1.5%
 - PRR = 17.7%/1.5% = 11.8!!!!!
 - IPSM-derived expected frequency: 17.6%
 - PRR = 17.7%/17.6% = 1.0 ...

IPSM corrects for indication and co-Rx biases

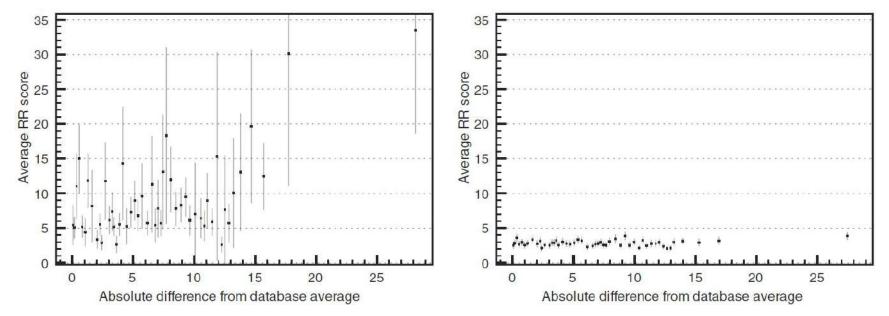


IPSM implicit correction for other biases



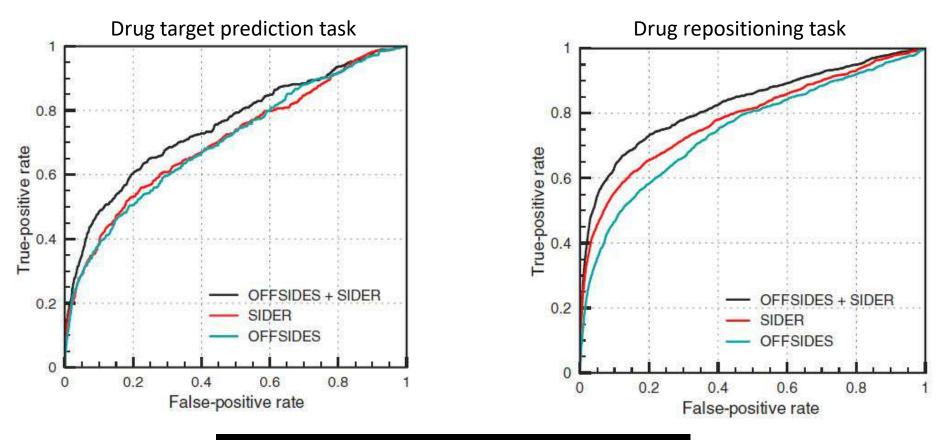
Drugs preferentially with males are more likely to be associated with 33 sex-related (male) effects

Drugs preferentially with young/old patients are more likely to be associated with 48 age-related effects



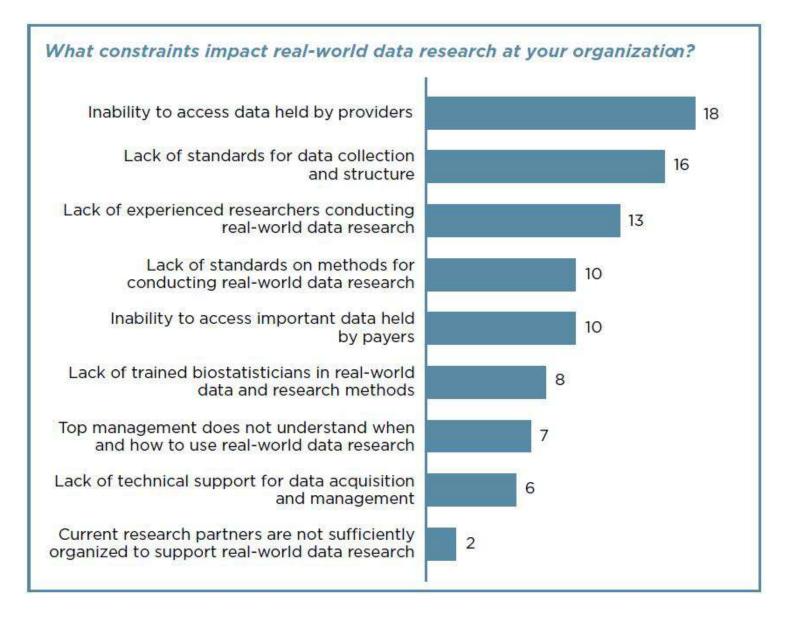
The usage of Offsides and Twosides

- IPSM corrects for biases introduced by hidden covariates
- EBGM addresses sampling variance
- Two comprehensive databases
 - Offsides: drug-AE
 - Twosides: drug1-drug2-AE



Tatonetti NP et al. Sci Transl Med. 2012;4(125):125ra31.

Challenges impacting real world evidence research



Available at http://assets1.csc.com/health_services/downloads/CSC_Real_World_Data_Research.pdf

Outline

- Introduction of Drug Discovery and Development
- Motivation of Data Mining
- Case Study: Drug Repositioning
- Case Study: Real-World Evidence
- Data Sources for Data Mining Applications
- Challenges and Summary

Examples of preclinical data sources

Name	Sponsor	Description	
Chemical resources			
DrugBank	U of Alberta	drug data, drug target, and drug action information	
PubChem	NCBI	chemical molecules and their activities against biological assays	
Genomic/Proteomic resources			
GenBank Gene Expression Omnibus	NCBI	annotated, publicly available DNA sequences	
(GEO)	NCBI	publicly avalable gene expression profiles	
Proteomics IDEntifications			
(PRIDE) database	EBI	publicly available proteomics data	
		genome-wide transcriptional expression data	
	Broad	from cultured human cells treated with bioactive	
Connectivity Map (CMap)	Institute	small molecules	

- Pro: easy to access; high quality
- Con: translational issue

Examples of clinical data sources (1): from clinical trials to RWE

Name	Sponsor	Description	
Clinical trial resources			
ClinicalTrials.gov	NIH	federally and privately supported clinical trials; provides details such as the purpose and summary results of a trial	
Trialtrove	Citeline	comprehensive real-time source of pharmaceutical clinical trials (over 30,000 clinical trial data sources from more than 150 countries)	
Health record resources			
	Stanford School		
STRIDE Clinical Data Warehouse	of Medicine	1.53 million pediatric and adult patients from 1994 to now at SUMC,	
National Patient Care Database (NPCD)	Veterans Health Administration		
General Practice Research Database (GPRD)	UK Medicines Control Agency	longitudinal medical records of 5 million active patients capturred from primary care provided in UK	
Electronic Medical Records and Genomics (eMERGE)	NHGRI	combines DNA biorepositories with electronic medical record (EMR) systems for large-scale, high-throughput genetic research	
PatientsLikeMe	PatientsLikeMe	a social-networking health site enabling members to share symptom and treatment information	

- Pro: direct observation from patients
- Con: dirty; inconsistent; privacy and ethical consideration

Examples of clinical data sources (2): safety data

Name	Sponsor	Description
Safety data resources		
SIDER	EMBL	marketed medicines and their recorded adverse drug reactions extracted from package inserts capturing information collected from the post-
Adverse Event Reporting System (AERS)	FDA	marketing safety surveillance program for all approved drugs drug-effect associations/drug-drug-effect mined
Offsides/Twosides	Columbia U	from the FAERS not listed on the drug package inserts
Vaccine Adverse Event Reporting System (VAERS)	FDA/CDC	captures the reporting of adverse events following immunization
Drug Interaction DataBase (DIDB)	U of Washington	human drug interactions extracted from sources such as PubMed, NDA, and FDA
SuperToxic	Charite University	a database of toxic compounds extracted from literature and web sources that provides details of possible biological interactions

Outline

- Introduction of Drug Discovery and Development
- Motivation of Data Mining
- Case Study: Drug Repositioning
- Case Study: Real-World Evidence
- Data Sources for Data Mining Applications
- Challenges and Summary

Challenges of all

- Lack of Gold Standard for data-mining
 - Drug-disease relationships
 - Drug-side effect relationships
- Machine learning models usually not easy to explain to clinicians and biologists
- 'Translation' among disease names across different ontologies
 - MeSH
 - ATC Code
 - SNOMED-CT
 - MeDRA
 - ICD-9

The application of biomedical gold standards recent work

PRR

0.50

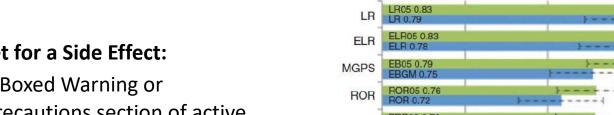
0.60

Positive Drug Set for a Side Effect:

- Event listed in Boxed Warning or Warnings/Precautions section of active FDA structured product label
- Drug listed as 'causative agent' in Tisdale et al, 2010: "Drug-Induced Diseases" [35]
- Literature review identified no powered studies with refuting evidence of effect

Negative Set:

- Event not listed anywhere in any section of active FDA structured product label
- Drug not listed as 'causative agent' in Tisdale et al, 2010: "Drug-Induced Diseases" [35]
- Literature review identified no powered studies with evidence of potential positive association



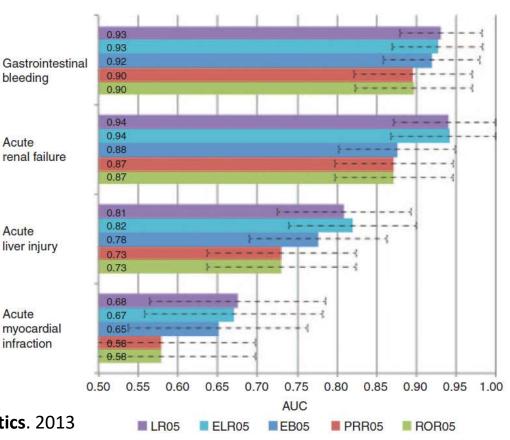
bleeding

Acute

Acute

Acute

infraction



0.70

0.80

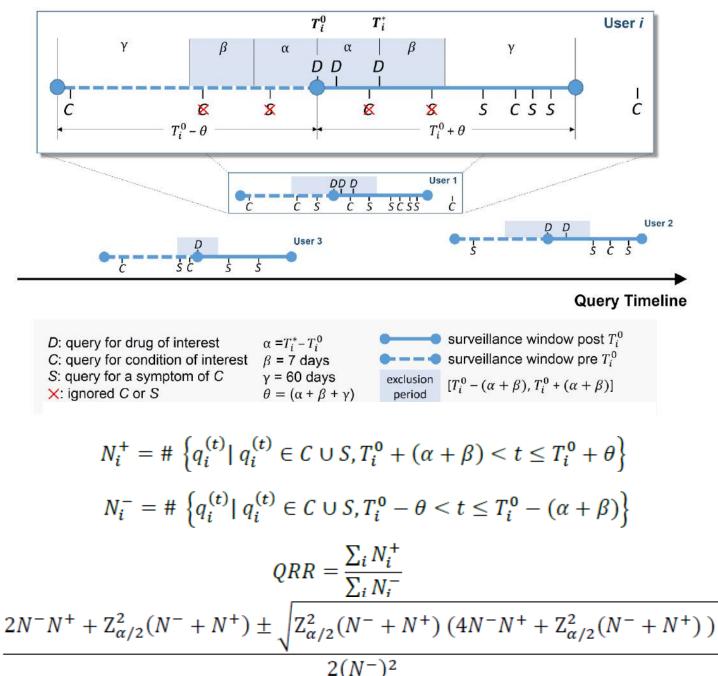
AUC

0.90

1.00

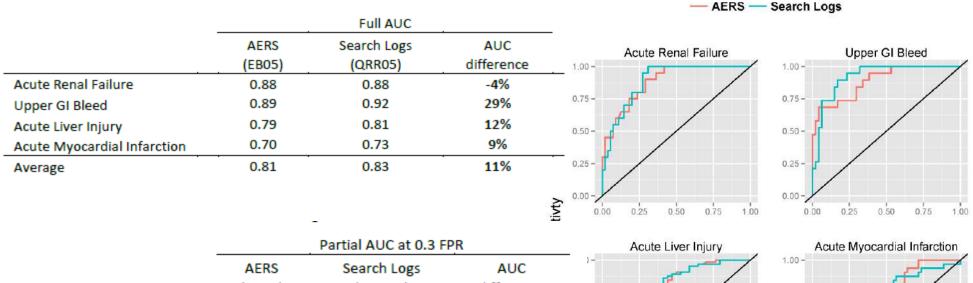
Harpaz, R, et al. Clinical Pharmacology and Therapeutics. 2013

Side effect detection based on search engine logs

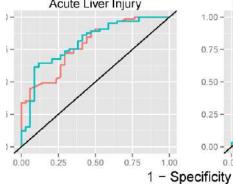


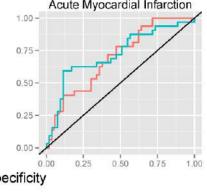
Ryen W, et al. Clinical Pharmacology and Therapeutics 2014. doi:10.1038/clpt.2014.77

Comparison between AERS and search log based signal detection



	Faitlal AOC at 0.5 FFN			
	AERS	Search Logs	AUC	
	(EB05)	(QRR05)	difference	
Acute Renal Failure	0.19	0.19	-2%	
Upper GI Bleed	0.21	0.22	17%	
Acute Liver Injury	0.14	0.16	10%	
Acute Myocardial Infarction	0.10	0.14	19%	
Average	0.16	0.18	12%	





Create a better life for human being

 In September, 2013, Larry Page announced his latest "moonshot," a new venture to extend the human life span

Thank you! | Questions?

Ping Zhang: pzhang@us.ibm.com Lun Yang: Lun.Yang@gmail.com