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ABSTRACT
Despite intense efforts in basic and clinical research, an individual-
ized ventilation strategy for critically ill patients remains a major
challenge. Recently, dynamic treatment regime (DTR) with rein-
forcement learning (RL) on electronic health records (EHR) has
attracted interest from both the healthcare industry and machine
learning research community. However, most learned DTR policies
might be biased due to the existence of confounders. Although
some treatment actions non-survivors received may be helpful, if
confounders cause the mortality, the training of RL models guided
by long-term outcomes (e.g., 90-day mortality) would punish those
treatment actions causing the learned DTR policies to be subop-
timal. In this study, we develop a new deconfounding actor-critic
network (DAC) to learn optimal DTR policies for patients. To allevi-
ate confounding issues, we incorporate a patient resamplingmodule
and a confounding balance module into our actor-critic framework.
To avoid punishing the effective treatment actions non-survivors
received, we design a short-term reward to capture patients’ imme-
diate health state changes. Combining short-term with long-term
rewards could further improve the model performance. Moreover,
we introduce a policy adaptation method to successfully transfer
the learned model to new-source small-scale datasets. The experi-
mental results on one semi-synthetic and two different real-world
datasets show the proposed model outperforms the state-of-the-art
models. The proposed model provides individualized treatment
decisions for mechanical ventilation that could improve patient
outcomes.

CCS CONCEPTS
• Computing methodologies → Sequential decision making;
• Applied computing→ Health informatics.
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1 INTRODUCTION
Mechanical ventilation is one of the most widely used interven-
tions in admissions to the intensive care unit (ICU). Around 40% of
patients in the ICU are supported on invasive mechanical ventila-
tion at any given time, accounting for 12% of total hospital costs
in the United States [1, 31]. Despite intense efforts in basic and
clinical research, an individualized ventilation strategy for criti-
cally ill patients remains a major challenge [18, 20]. If not applied
adequately, suboptimal ventilator settings can result in ventilator-
induced lung injury, hemodynamic instability, and toxic effects of
oxygen. Dynamic treatment regime (DTR) learning on electronic
health records (EHR) with reinforcement learning (RL) might be
helpful for learning optimal treatments by analyzing a myriad of
(mostly suboptimal) treatment decisions.

Recently, DTR learning with RL has attracted the interest of
healthcare researchers [5, 12, 18, 19, 21, 22, 32]. However, most
existing studies suffer from three limitations. First, most existing
RL-based methods [12, 18, 19, 29] punish the treatment actions
for patients who ultimately suffer from mortality. However, for
some patients with worse health states, the mortality rates remain
high even if they received optimal treatment. Actions that did not
contribute to mortality should not be punished in the treatment
of non-survivors. Second, RL strategies learned from initial EHR
datasets may be biased due to the existence of confounders (patients’
health states are confounders for treatment actions and clinical
outcomes) and data unbalance (mortality rates in different datasets
vary widely and might be less than 25%). Third, external validation
on different-source data is lacking (e.g., how amodel trained on data
extracted from the United States performs on European datasets).
Especially when the treatment action distributions are different,
efficient adaptation to new datasets has not been considered.
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In this study, we propose a new deconfounding actor-critic model
(DAC) to address these issues. First, we resample paired survivor
and non-survivor patients with similar estimated mortality risks to
build balanced mini-batches. Then we adopt an actor-critic model
to learn the optimal DTR policies. The longitudinal patients’ data
are sent to a long short-term memory network (LSTM) [9] to gen-
erate the health state sequences. The actor network produces the
probabilities of different treatment actions at next time step and is
trained by maximizing the rewards generated by the critic network.
To avoid punishing some effective treatment actions in EHR history
of non-survivors, the critic network produces both short-term and
long-term rewards. Short-term rewards can encourage the treat-
ment actions that improve patients’ health states in the coming
time steps, even if the patients ultimately suffer from mortality. To
further remove the confounding bias, we introduce a dynamic in-
verse probability of treatment weighting method to assign weights
to the rewards at each time step for each patient and train the actor
network with the weighted rewards. Finally, we introduce a policy
adaptation method to transfer well-learned models to new-source
small-scale datasets. The policy adaption method chooses actions
so that the resulting next-state distribution on the target environ-
ment is similar to the next-state distribution resulting from the
recommended action on the source environment.

We conduct DTR learning experiments on a semi-synthetic
dataset and two real-world datasets (i.e., MIMIC-III [11] and Amster-
damUMCdb [27]). The experimental results show that the proposed
model outperforms the baselines and can reduce the estimated mor-
tality rates. Moreover, we find the mortality rates are lowest in
patients for whom clinicians’ actual treatment actions matched the
model’s decisions. The proposed model can provide individualized
treatment decisions that could improve patients’ clinical outcomes.

In sum, our contributions are as follows: (i) We develop a new
DTR learning framework with RL and experiments on MIMIC-III
and AmsterdamUMCdb datasets demonstrate the effectiveness of
the proposed model; (ii) We present a patient resampling operation
and a confounding balance module to alleviate the confounding
bias; (iii) We propose combining long-term and short-term rewards
to train the RL models; (iv) We propose a policy adaptation model
that can effectively adapt pre-trained models to new small-scale
datasets. The implementation code can be found at GitHub1.

2 PROBLEM FORMULATION
Setup. DTR is modeled as a Markov decision process (MDP) with
finite time steps and a deterministic policy consisting of an ac-
tion space A, a health state space S, a observational state space
O, and a reward function: A × S → 𝑅. A patient’s EHR data
consists of a sequence of observational variables (including demo-
graphics, vital signs and lab values), denoted by𝑂 = {𝑜1, 𝑜2, ..., 𝑜𝑇 },
𝑜𝑡 ∈ O, the treatment actions represented as 𝐴 = {𝑎1, 𝑎2, ..., 𝑎𝑇 },
𝑎𝑡 ∈ A and mortality outcome 𝑦 ∈ {0, 1}, where 𝑇 denotes the
length of the patient’s EHR history. We assume some health vari-
ables 𝑆 = {𝑠1, 𝑠2, ..., 𝑠𝑇 }, 𝑠𝑡 ∈ S can represent the health states
of a patient and include the key information of previous observa-
tional data of the patients. Given the previous health state sequence

1https://github.com/yinchangchang/DAC

Table 1: Important Notations

Notation Definition

O The space of time-varying covariates
A The set of treatment options of interest
S The space of confounders
𝑜𝑡 The time-varying covariates at time 𝑡
𝑎𝑡 The treatment assigned at time 𝑡
𝑠𝑡 The health state at time 𝑡
𝑤𝑡 The reward weight at time 𝑡
𝑦 The outcome
𝜋𝜃 The learned DTR policy
𝜌 The state distribution
𝑅𝑙 The long-term reward
𝑅𝑠 The short-term reward
𝑄 The reward for treatment actions
𝑝𝑚 The patient mortality probability
𝛼 The hyper-parameter to adjust the weights of two rewards
𝑤∗, 𝑏∗ The learnable parameters

𝑆𝑡 = {𝑠1, 𝑠2, ..., 𝑠𝑡 }, action sequence 𝐴𝑡−1 = {𝑎1, 𝑎2, ..., 𝑎𝑡−1} and ob-
servation sequence 𝑂𝑡 = {𝑜1, 𝑜2, ..., 𝑜𝑡 } up to time step 𝑡 , our goal
is to learn a policy 𝜋𝜃 (·|𝑆𝑡 ,𝑂𝑡 , 𝐴𝑡−1) to select the optimal action 𝑎𝑡
by maximizing the sum of discounted rewards (return) from time
step 𝑡 . We use LSTM to model patient health states and LSTM can
remember the key information of patients’ EHR history. We assume
state 𝑠𝑡 contains the key information of the previous data, and learn
a policy 𝜋𝜃 (·|𝑠𝑡 ) instead of 𝜋𝜃 (·|𝑆𝑡 ,𝑂𝑡 , 𝐴𝑡−1).

Time-varying confounders. Figure 1 (a) shows the causal rela-
tionship of various variables. 𝑜𝑡 denotes the time-dependent obser-
vational data at time 𝑡 , which is only affected by health state 𝑠𝑡 . The
treatment actions 𝑎𝑡 are affected by both observed variable 𝑜𝑡 and
health state 𝑠𝑡 . The potential outcomes 𝑦 are affected by last ob-
servational variable 𝑜𝑇 , treatment assignments 𝑎𝑇 and health state
𝑠𝑇 . Patients’ health states 𝑆 are time-varying confounders for both
treatment actions𝐴 and clinical outcomes𝑦. Without the considera-
tion of the causal relationship among the variables, it is possible that
RL models may focus on the strong correlation between positive
outcomes and “safe” actions (e.g., without mechanical ventilator)
and prefer to recommend the “safe” actions, which will cause higher
mortality rates for high-risk patients. It is important to remove the
confounding when training DTR policies on real-world datasets.
DTR policies learned from initial clinical data could be biased due
to the existence of time-varying confounders.

We summarize the important notations in this paper in Table 1.

3 METHOD
In this section, we propose a new causal reinforcement learning
framework to learn optimal treatment strategies. We first introduce
the deconfounding module that resamples patients according to
their mortality risks and computes the rewards weights. Then we
develop an actor-critic network to learn DTR policies with the
weighted rewards. Finally, we present a policy adaptation method
that can transfer well-trained models to new-source environments.
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Figure 1: Framework of proposed DTR learning model. (a) The causal graph of variables. 𝑎𝑡 denotes the assigned actions. The
observational variables 𝑜𝑡 are covariates. 𝑦 denotes the final clinical outcomes. The patient health states 𝑠𝑡 are confounders
for both 𝑎𝑡 and 𝑦. (b) Patient resampling operation. Non-survivors have more high-risk health states than survivors. The
unbalanced data might introduce bias to learned DTR policies. We resample the patients according to their mortality risks such
that both survivor and non-survivor groups follow similar mortality risk distributions. (c) Framework of the proposed model.
Given the resampled datasets, the embeddings of observed variable 𝑜𝑡 are sent to LSTM to model the patients’ health state
sequences. Actor network generates the probabilities for next actions based on the health states and critic network produces
the short-term reward 𝑅𝑠𝑡 and long-term reward 𝑅𝑙𝑡 for the (𝑠𝑡 , 𝑎𝑡 ) pairs. Considering the causal relationship among states 𝑠𝑡 ,
observations 𝑜𝑡 , actions 𝑎𝑡 and outcome 𝑦, we compute an inverse weight 𝑤𝑡 at each time step 𝑡 for the rewards. The actor
network is trained by maximizing the expected weighted reward.

3.1 Deconfounding Module
DTR policies learned from initial clinical data could be biased for
two-fold reasons. First, the training of RL models is usually guided
by designed rewards, which are highly related to patients’ long-
term outcomes. Existing DTR models [12, 22, 29] encourage the
treatment actions that survivors received and punish the treatment
actions that non-survivors received. The mortality rates of the col-
lected datasets have important effects on the learned policies and
might cause policy bias. The mortality rates of different-source
datasets vary widely and the bias could further limit the model
performance when adapting learned DTR policies to new-source
datasets. The second reason for policy bias is the existence of con-
founders. Patients’ clinical outcomes𝑦 (e.g., mortality or discharged)
are affected by both patient health states 𝑠𝑡 and treatment actions
𝑎𝑡 , as shown in Fig. 1 (a). The treatment actions are also affected by
patient health states 𝑠𝑡 . The patient health states 𝑠𝑡 are confounders
for both actions 𝑎𝑡 and final clinical outcome 𝑦. In this subsection,
we introduce patient resampling module and confounding balance
module to address the policy bias problems.

Patient resampling module. We resample the patients accord-
ing to their mortality risks when training our treatment learning
models. First, we train a mortality risk prediction model, which
takes the patients’ observational data as inputs and produces the
90-day mortality probability at each time step 𝑡 . Then, patients are
divided into a survivor pool and a non-survivor pool. When train-
ing treatment learning models, we always sample paired patients
from the two pools respectively with similar maximal mortality

risks in their EHR sequence. With the resampling operation, we
build balanced mini-batch where survivors and non-survivors have
similar mortality risk distributions, as shown in Figure 1 (b).

Confounding balancemodule.To adjust the confounder, we train
the actor-critic network with weighted rewards and the weights
are computed based on the probabilities that the corresponding
treatment actions are assigned. Given a patient health state 𝑠𝑡 at
time step 𝑡 , the probability that an action 𝑎 would be assigned is
represented as 𝜋𝜃 (𝑎 |𝑠𝑡 ). We compute the weights using inverse
probability of treatment weighting (IPTW) [14, 24] and extend to
dynamic multi-action setting as follows,

𝑤𝑡 = Π𝑡
𝜏=1

𝑓 (𝑎𝜏 |𝐴𝜏−1)
𝑓 (𝑎𝜏 |𝐴𝜏−1,𝑂𝜏−1)

= Π𝑡
𝜏=1

𝑓 (𝑎𝜏 |𝐴𝜏−1)
𝜋𝑐 (𝑎𝜏 |𝑠𝜏 )

(1)

where 𝑓 (𝑎𝜏 |𝐴𝜏−1) is the posterior probability of action 𝑎𝜏 given
last action sequence 𝐴𝜏−1, which could be modelled with LSTM.
𝑓 (𝑎𝜏 |𝐴𝜏−1,𝑂𝜏 ) denotes predicted probability of receiving treat-
ment 𝑎𝜏 given the observed data and historical information, and is
computed with clinician policy 𝜋𝑐 . 𝜋𝑐 (𝑎𝜏 |𝑠𝜏 ) is the probability for
action 𝑎𝜏 given patient’s health state 𝑠𝜏 . 𝜋𝑐 shares the same actor
network as the proposed DAC model and is trained by mimicking
clinicians’ policy. The computed weights are used in the training
of the actor network.

3.2 Actor-Critic Framework
In this subsection, we present the details of our RL model based
on actor-critic network, including how to model patients’ health
states and update the actor and critic networks.
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Observational data embedding and health state representa-
tion. The observational data contain different vital signs and lab
tests, which have lots of missing values. Existing models usually
impute the missing values based on previous observational data.
However, for some patients with some high missing-rate variables,
the imputation results might be inaccurate and thus introduce more
imputation bias, which is harmful for modeling the patient health
states. Following [33], we embed the observed variables with cor-
responding values, and only input the embeddings of observed
variables to the model. Given the variable 𝑖 and the observed values
in the whole dataset, we sort the values and discretize the values
into 𝑉 sub-ranges with equal number of observed values in each
sub-range. The variable 𝑖 is embedded into a vector 𝑒𝑖 ∈ 𝑅𝑘 with
an embedding layer. As for the sub-range 𝑣 (1 ≤ 𝑣 ≤ 𝑉 ), we embed
it into a vector 𝑒 ′𝑣 ∈ 𝑅2𝑘 :

𝑒 ′𝑣𝑗 = 𝑠𝑖𝑛( 𝑣 ∗ 𝑗
𝑉 ∗ 𝑘 ), 𝑒 ′𝑣

𝑘+𝑗 = 𝑐𝑜𝑠 ( 𝑣 ∗ 𝑗
𝑉 ∗ 𝑘 ), (2)

where 0 ≤ 𝑗 < 𝑘 . By concatenating 𝑒𝑖 and 𝑒 ′𝑣 , we obtain vector
containing both the variable’s and its value’s information. A fully
connected layer is followed to map the concatenation vector into a
new value embedding vector 𝑒𝑖𝑣 ∈ 𝑅𝑘 .

Given the value embeddings of observational variables in the
same collection, a max-pooling layer is followed to generate the
collection representation vector 𝑒𝑡 . They are sent to a LSTM to
generate a sequence of health state vectors 𝑆 = {𝑠1, 𝑠2, ..., 𝑠 |𝑆 |},
𝑠𝑡 ∈ 𝑅𝑘 .

Actor network update. Given a patient’s health states, a fully
connected layer and a softmax layer are followed to generate the
probabilities for next actions. The actor network generates the prob-
abilities for next actions 𝜋𝜃 . The critic network produce the rewards
for action 𝑎, denoted as 𝑄 (𝑠, 𝑎). We update the actor network by
maximizing the expected reward:

𝐽 (𝜋𝜃 ) =
∫
𝑠∈S

𝜌 (𝑠)
∑︁
𝑎∈A

𝜋𝜃 (𝑎 |𝑠)𝑄 (𝑠, 𝑎)𝑑𝑠, (3)

where 𝜌 (𝑠) denotes the state distribution. We use policy gradient to
learn the parameter 𝜃 by the gradient ▽𝜃 𝐽 (𝜋𝜃 ) which is calculated
using the policy gradient theorem [26]:

▽𝜃 𝐽 (𝜋𝜃 ) =
∫
𝑠∈S

𝜌 (𝑠)
∑︁
𝑎∈A
▽𝜃𝜋𝜃 (𝑎 |𝑠)𝑄 (𝑠, 𝑎)𝑑𝑠

= 𝐸𝑠∼𝜌,𝑎∈𝜋𝜃 [▽𝜃 log𝜋𝜃 (𝑎 |𝑠)𝑄 (𝑠, 𝑎)]
(4)

Critic network update. The critic network takes patients’ health
states and treatment actions as inputs, and outputs the rewards. We
use fully connected layers to learn the long-term reward function:

𝑅𝑙 (𝑠𝑡 ) = 𝑠𝑡𝑤𝑙 + 𝑏𝑙 , (5)

where 𝑤𝑙 ∈ 𝑅𝑘×|A | , 𝑏𝑙 ∈ 𝑅 |A | are learnable parameters. Given
the state-action pairs at time 𝑡 , the long-term reward function is
trained by minimizing 𝐽 (𝑤𝑙 , 𝑏𝑙 ):

𝐽 (𝑤𝑙 , 𝑏𝑙 ) = 𝐸𝑠𝑡∼𝜌 [𝑅𝑙 (𝑠𝑡 , 𝑎𝑡 ) − 𝑧𝑡 )2]

𝑧𝑡 = 𝑅𝑚 (𝑠𝑡 , 𝑎𝑡 ) + 𝛾𝑅𝑙 (𝑠𝑡+1, 𝑎𝑡+1),
(6)

where 𝑎𝑡+1 is the action with the maximum reward in the next step,
𝑅𝑙 (𝑠𝑡 , 𝑎𝑡 ) ∈ 𝑅 is the corresponding dimension reward of 𝑅𝑙 (𝑠𝑡 ) for
action 𝑎𝑡 and 𝑅𝑚 (𝑠𝑡 , 𝑎𝑡 ) denotes the reward at the last time step.

Algorithm 1 Deconfounding Actor-Critic
Input: Observations 𝑂 , treatment actions 𝐴, outcome 𝑦;
Output: Policy 𝜋𝜃 ;
1: Train a mortality risk prediction model and compute the risks

for patients in training set;
2: repeat
3: Sample paired patients from survivor and non-survivor pools

with similar mortality risks;
4: # Inference
5: for 𝑡 = 1, ...,𝑇 do
6: Input the observations 𝑜𝑡 to LSTM to generate health

states 𝑠𝑡 ;
7: Produce probability distribution for next actions 𝜋𝜃 (·|𝑠𝑡 );
8: Compute reward weight𝑤𝑡 according to Eq. (1);
9: Compute 𝑅𝑙 (𝑠𝑡 , 𝑎𝑡 ) according to Eq. (5);
10: Compute 𝑅𝑠 (𝑠𝑡 , 𝑎𝑡 ) according to Eq. (9);
11: Compute 𝑄 (𝑠𝑡 , 𝑎𝑡 ) according to Eq. (10);
12: end for
13: # Actor network update
14: Update policy 𝜋𝜃 according to Eq. (4);
15: # Critic network update
16: Update long-term reward function 𝑅𝑙 (𝑠, 𝑎) by minimizing

𝐽 (𝑤𝑙 , 𝑏𝑙 ) in Eq. (6);
17: Update mortality risk prediction function 𝑝𝑚 (𝑠, 𝑎) by mini-

mizing 𝐽 (𝑤𝑚, 𝑏𝑚) in Eq. (8);
18: until Convergence.

Given a patient with EHR length equal to 𝑇 , 𝑅𝑚 (𝑠𝑡 , 𝑎𝑡 ) = 0, 𝑡 < 𝑇 .
Following [12, 21], the reward for the last action is set as ±15.
Specially, if the patient suffers from mortality, 𝑅𝑚 (𝑠𝑇 , 𝑎𝑇 ) = −15.
Otherwise, 𝑅𝑚 (𝑠𝑇 , 𝑎𝑇 ) = 15.

Most existing RL-based models are trained with long-term re-
wards and punish the actions non-survivors received. However, for
some patients with worse health states, the probability of mortality
is still high even if they receive optimal treatment. Some actions
should not be punished in the treatment of patients with mortality.
We propose a short-term reward based on estimated mortality risk
to improve the training of RL models. The estimated mortality risks
𝑝𝑚 (𝑠𝑡 ) in 48 hours are generated with fully connected layers and a
Sigmoid layer:

𝑝𝑚 (𝑠𝑡 ) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑠𝑡𝑤𝑚 + 𝑏𝑚), (7)

where 𝑤𝑚 ∈ 𝑅𝑘×|A | , 𝑏𝑚 ∈ 𝑅 |A | are learnable parameters. The
mortality probability in 48 hours with an action 𝑎 at time 𝑡 is the
action’s corresponding dimension of 𝑝𝑚 (𝑠𝑡 ), denoted as 𝑝𝑚 (𝑠𝑡 , 𝑎).
The mortality risk prediction function 𝑝𝑚 is trained by minimizing
𝐽 (𝑤𝑚, 𝑏𝑚):
𝐽 (𝑤𝑚, 𝑏𝑚) = 𝐸𝑠𝑡∼𝜌 [−𝑦𝑡 log(𝑝𝑚 (𝑠𝑡 , 𝑎𝑡 ))−(1−𝑦𝑡 ) log(1−𝑝𝑚 (𝑠𝑡 , 𝑎𝑡 ))],

(8)
where 𝑦𝑡 denote whether the patient suffer from mortality within
48 hours after time step 𝑡 . The short-term reward is computed as
the mortality probability decrease given the action as follows,

𝑅𝑠 (𝑠𝑡 , 𝑎𝑡 ) =
∑︁
𝑎∈A

𝜋𝜃 (𝑎 |𝑠𝑡 )𝑝𝑚 (𝑠𝑡 , 𝑎) − 𝑝𝑚 (𝑠𝑡 , 𝑎𝑡 ) (9)
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Algorithm 2 Policy Adaptation
Input: Source domain policy 𝜋𝑆

𝜃
and dynamics 𝑓 𝑆 , patient state 𝑠;

Output: Next action on target domain 𝜋𝑇 (𝑠), target dynamics 𝑓 𝑇 ;
1: Initialize 𝑓 𝑇 = 𝑓 𝑆 ;
2: # Learn the target dynamics 𝑓 𝑇 ;
3: repeat
4: Sample a bath patients;
5: for 𝑡 = 1, ...,𝑇 do
6: Compute 𝑓 𝑇 (𝑠𝑡 , 𝑎𝑡 );
7: end for
8: Update 𝑓 𝑇 by minimizing 𝐽 (𝑤𝑑 , 𝑏𝑑 );
9: until Convergence.
10: # Adapt 𝜋𝑆

𝜃
to target domain;

11: for patient 𝑝 in 𝑃 do
12: for 𝑡 = 1, ...,𝑇 do
13: Compute the optimal action 𝑎𝑆𝑡 = 𝜋𝑆

𝜃
(𝑠𝑡 );

14: Compute the predicted next state 𝑓 𝑆 (𝑠𝑡 , 𝑎𝑆𝑡 );
15: for action 𝑎← 𝐴 do
16: Compute the state distance | |𝑓 𝑇 (𝑠𝑡 , 𝑎) − 𝑓 𝑆 (𝑠𝑡 , 𝑎𝑆𝑡 ) | |;
17: end for
18: Recommend the action with minimal state distance;
19: end for
20: end for

The overall reward 𝑄 is computed by combining short-term and
long-term rewards:

𝑄 (𝑠𝑡 , 𝑎𝑡 ) = 𝑤𝑡 (𝛼𝑅𝑙 (𝑠𝑡 , 𝑎𝑡 ) + (1 − 𝛼)𝑅𝑠 (𝑠𝑡 , 𝑎𝑡 )), (10)

where 𝛼 is a hyper-parameter to adjust the weights of the two
rewards and𝑤𝑡 denotes the inverse weight computed by the con-
founding balance module. The details of 𝛼 selection can be found in
supplementary material. Algorithm 1 describes the training process
of the proposed DAC.

3.3 Policy adaptation
In real-world clinical settings, a pre-trained model might suffer
from performance decline in new environments when the patient
distribution is different. It is possible that we cannot collect enough
data to train a new model in the new environment. To address the
problem, we propose a policy adaptation method to transfer the
pre-trained model to new environments.

We first train a policy 𝜋𝑆
𝜃
on a source dataset (i.e., MIMIC-III), and

then adapt the model to a target dataset (i.e., AmsterdamUMCdb).
We learn two dynamic function 𝑓 𝑆 and 𝑓 𝑇 on the source dataset
and the target dataset respectively to predict next state 𝑠𝑡+1 given
the state 𝑠𝑡 and action 𝑎𝑡 at time step 𝑡 .

𝑓 𝑇 (𝑠𝑡 , 𝑎𝑡 ) = 𝑠𝑡𝑤𝑑 + 𝑎𝑡𝑤𝑎 + 𝑏𝑑 , (11)

where 𝑤𝑑 ,𝑤𝑎 ∈ 𝑅𝑘×𝑘 , 𝑏𝑑 ∈ 𝑅𝑘 are learnable parameters. The
dynamic functions are trained by minimizing 𝐽 (𝑤𝑑 , 𝑏𝑑 ):

𝐽 (𝑤𝑑 , 𝑏𝑑 ) = 𝐸𝑠𝑡∼𝜌 [𝑓 𝑇 (𝑠𝑡 , 𝑎𝑡 ) − 𝑠𝑡+1)2] (12)

Note that 𝑓 𝑆 and 𝑓 𝑇 share the same structure and objective function,
but are trained on different datasets. The target dynamics 𝑓 𝑇 is
initialized as source dynamics 𝑓 𝑆 and fine-tuned on the small-scale
target dataset.

Table 2: Statistics of MIMIC-III and AmsterdamUMCdb

MIMIC AmsterdamUMCdb

#. of patients 10,843 6,560
#. of male 5,931 3,412
#. of female 4,912 3,148

Age (mean ± std) 60.7 ± 11.6 62.1 ± 12.3
Mortality rate 24% 35%

Given 𝜋𝑆
𝜃
, 𝑓 𝑆 and 𝑓 𝑇 , we define the policy 𝜋𝑇

𝜃
on target dataset

as:
𝜋𝑇
𝜃
(𝑠) = argmin

𝑎∈𝐴
(𝑓 𝑇 (𝑠, 𝑎) − 𝑓 𝑆 (𝑠, 𝜋𝑆

𝜃
(𝑠)))2 (13)

Assuming 𝑓 𝑆 and 𝑓 𝑇 are accurate in terms of modeling patient state
transition on source and target environments, 𝜋𝑇

𝜃
(𝑠) can pick the

action such that the resulting next state distribution under 𝑓 𝑇 on
target environment is similar to the next state distribution resulting
from 𝜋𝑆

𝜃
(𝑠) under the source dynamics. Algorithm 2 describes the

details of policy adaptation.

4 EXPERIMENTS
To evaluate the performance of the proposed model, we conduct
comprehensive comparison experiments on three datasets, includ-
ing two real-world EHR datasets and a semi-synthetic dataset.

4.1 Datasets
Real-world datasets. Both MIMIC-III2 and AmsterdamUMCdb3
are publicly available real-world EHR datasets. Following [18], we
extract all adult patients undergoing invasive ventilation more than
24 hours and extract a set of 48 variables, including demographics,
vital signs and laboratory values. Following [18], We learn the
DTR policies for positive end-expiratory pressure (PEEP), fraction
of inspired oxygen (FiO2) and ideal body weight-adjusted tidal
volume (Vt). We discretize the action space into 7×7×7 actions. The
statistics of extracted data from MIMIC-III and AmsterdamUMCdb
are displayed in Table 2. More details of data preprocessing (e.g.,
the list of extracted variables) can be found in GitHub1.

Semi-synthetic dataset based on MIMIC-III. As the MIMIC-III
dataset is real-world observational data, it is impossible to obtain the
potential outcomes for underlying counterfactual treatment actions.
To evaluate the proposed model’s ability to learn optimal DTR
policies, we further validate the method in a simulated environment.
We simulate health state 𝑠𝑡 and observational data 𝑜𝑡 for each
patient at time 𝑡 following 𝑝-order autoregressive process [15]. The
details of the simulation can be found in supplementary material.

4.2 Methods for comparison
We compare the proposed model with following baselines.
Supervised models:
• Markov Decision Process (MDP): The observations of
variables are clustered into 750 discrete patient states with
k-means. Markov decision process is used to learn the state

2https://mimic.physionet.org/
3https://amsterdammedicaldatascience.nl
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Table 3: Performance comparison for policy evaluation on test sets. Note that RL and CI denote reinforcement learning and
causal inference respectively.

MIMIC AmsterdamUMCdb Semi-synthetic
EM ↓ WIS ↑ EM ↓ WIS ↑ ACC-3↑ ACC-1↑

Imitation Learning 𝑆 0.21 1.85 0.26 1.21 0.31 0.63
Supervised Imitation Learning 𝑀 0.23 1.84 0.28 0.95 0.27 0.61
learning Imitation Learning 𝐴 0.21 1.98 0.25 1.26 0.32 0.65

MDP 0.22 2.04 0.26 1.03 0.28 0.62

RL

AI Clinician [12] 0.19 2.15 0.24 1.45 0.34 0.68
VentAI [18] 0.19 2.21 0.24 1.46 0.34 0.69
DQN [16] 0.20 2.33 0.25 1.43 0.36 0.70
MoE [19] 0.19 2.29 0.24 1.40 0.36 0.69
SRL-RNN [29] 0.19 2.47 0.25 1.58 0.37 0.70

RL with CI CIQ [32] 0.18 2.68 0.24 1.68 0.41 0.72
CIRL [5] 0.18 2.70 0.23 1.65 0.42 0.73

Ours

DAC−𝑟𝑠𝑝 0.18 2.75 0.23 1.78 0.42 0.74
DAC−𝑑𝑐𝑓 0.17 2.78 0.23 1.82 0.41 0.72
DAC−𝑠ℎ𝑜𝑟𝑡 0.17 2.93 0.22 1.89 0.44 0.74
DAC−𝑙𝑜𝑛𝑔 0.18 2.80 0.24 1.79 0.42 0.72
DAC 0.16 3.13 0.22 2.03 0.45 0.76

transition matrix with different actions. Only the discharged
patients are used during the training phase.
• Imitation Learning: Imitation learning models the patient
states with LSTM, and mimics the human clinician policy.
Different fromMDP, the hidden states of LSTM can represent
continuous states of patients.We implemented three versions
of imitation learning by training the same model on different
datasets. Imitation Learning 𝑆 is trained on the discharged
patients. Imitation Learning𝑀 is trained on the patients with
90-day mortality. Imitation Learning 𝐴 is trained on all the
patients in the training set.

RL-based DTR learning models:
• AI Clinician [12]: AI clinician clustered patient states into
750 groups and adopts MDP to model the patient state transi-
tion. The difference between AI clinician and MDP is that AI
clinician model is trained based on Q-learning while MDP
only mimics the human clinician strategy.
• VentAI [18]: VentAI also adopts MDP to model the patient
state transition and uses Q-learning to learn optimal policies
for mechanical ventilation.
• DQN [16]: DQN leverages LSTM to model patient health
states, and Q-learning is used to train the dynamic treatment
regime learning model.
• Mixture-of-Experts (MoE) [19]: MoE is a mixture model
of a neighbor-based policy learning expert (kernel) and a
model-free policy learning expert (DQN). The mixture model
switches between kernel and DQN experts depending on
patient’s current history.
• SRL-RNN [29]: SRL-RNN is based on actor-critic framework.
LSTM is used to map patients’ temporal EHRs into vector
sequences. The model combines the indicator signal and eval-
uation signal through joint supervised and reinforcement
learning.

RL-based models with causal inference:

• Causal inference Q-network (CIQ) [32]: CIQ trains Q-
network with interfered states and labels. Gaussian noise
and adversarial observations are considered in the training
of CIQ.
• Counterfactual inverse reinforcement learning (CIRL)
[5]: CIRL learns to estimate counterfactuals and integrates
counterfactual reasoning into batch inverse reinforcement
learning.

Variants of DAC: We implement the proposed model with five
versions. DAC is the main version. By removing the patient re-
sampling module, confounding balance module, long-term rewards
or short-term rewards, we train another four versions DAC−𝑟𝑠𝑝 ,
DAC−𝑑𝑐𝑓 , DAC−𝑙𝑜𝑛𝑔 , DAC−𝑠ℎ𝑜𝑟𝑡 to conduct the ablation study.

Note that the extracted variables contain lots of vital signs and
lab values, which have lots of missing values. The baselines can only
take fixed-sized observed variables as inputs. Following [12, 21],
we impute the missing values with multi-variable nearest-neighbor
imputation [28] before training the baseline models.
Implementation details.We implement our proposed model with
Python 2.7.15 and PyTorch 1.3.0. For training models, we use Adam
optimizer with a mini-batch of 256 patients. The observed variables
and corresponding values are projected into a 512-d space. The
models are trained on 1 GPU (TITAN RTX 6000), with a learning
rate of 0.0001. We randomly divide the datasets into 10 sets. All the
experiment results are averaged from 10-fold cross validation, in
which 7 sets were used for training every time, 1 set for validation
and 2 sets for test. The validation sets are used to determine the
best values of parameters in the training iterations. More details
and implementation code are available in GitHub1.

Note that there are 7 × 7 × 7 = 343 kinds of actions with three
parameters (i.e., PEEP, FiO2 and tidal volume). At the beginning of
training phase, it might be inaccurate to compute the probabilities
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(a) (b) (c)

Figure 2: Visualization of the action distribution in the 3-dimensional action space on MIMIC-III dataset. The horizontal axis
denotes the discritized actions and the vertical axis denotes the distribution of corresponding actions.

of 343 kinds of actions, which would cause the computed weight
in Eq. (1) to be unstable. Moreover, clinical guidelines [6, 13] also
recommend clinicians to increase or decrease the parameters ac-
cording to patients’ health states. When computing the inverse
probabilities, we use the probabilities for 3 action changes (i.e., in-
crease, decrease or keep the same for each parameter) instead of
the probabilities of 7 actions.

4.3 Evaluation Metrics
Evaluation metrics. The evaluation metrics for treatment rec-
ommendation in real-world datasets is still a challenge [7, 29].
Following [12, 22, 29, 30, 34], we try two evaluation metrics es-
timated mortality (EM), weighted importance sampling (WIS) to
compare the proposed model with the state-of-art methods for real-
world datasets. In the simulated environment, we have access to
the ground truth of optimal actions and compute the optimal action
accuracy rate following [5, 32]. Mechanical ventilator has three
important parameters: PEEP, Vt and FiO2. We compute two kinds
of accuracy rates: ACC-3 (whether the three parameters are set the
same as the optimal action simultaneously) and ACC-1 (whether
each parameter is set correctly). The details of the metric calculation
can be found in supplementary material.

4.4 Result Analysis
Table 3 displays the estimated mortality, WIS and action accuracy
rates on the three datasets. The results show that the proposed
model outperforms the baselines. The RL-based models (e.g., AI
Clinician, MoE, SRL-RNN) achieve lower estimated mortality rates
and higher WIS and action accuracy rates than supervised mod-
els (i.e., Imitation Learning and MDP), which demonstrates the
effectiveness of RL in DTR learning tasks.

Among the three versions of imitation learning, Imitation Learn-
ing𝑀 is trained on the non-survivor patients and thus performs
worse than the other two versions. However, Imitation Learning𝑀
still achieves comparable performance to MDP trained on dis-
charged patients, which demonstrates the clinicians’ treatment
strategies for survivors and non-survivors are similar. Thus it is not
appropriate to directly punish the treatment actions prescribed to
patients with mortality. We speculate that for some non-survivors,
the treatment actions might be helpful but the confounder (e.g., the

poor health states before treatments) caused the 90-day mortality.
Thus we propose deconfounding modules to alleviate the patient
state distribution bias. Taking into account the confounders, CIQ,
CIRL and the proposed models outperform the RL baselines, which
demonstrates the effectiveness of incorporation of counterfactual
reasoning in DTR learning tasks. Among the models with the con-
sideration of confounders, the proposed DAC performs better than
CIQ and CIRL. We speculate the reasons are two-fold: (i) we train
DAC on balanced mini-batch by resampling the patients, which
makes critic network’s counterfactual action reward estimation
more accurate; (ii) the proposed short-term rewards are more effi-
cient at capturing short-term patients’ health state changes than
discounted long-term rewards during the training of RL models.

Among the five versions of the proposed model, the main ver-
sion (i.e., DAC) outperforms DAC−𝑟𝑠𝑝 and DAC−𝑑𝑐𝑓 , which demon-
strates the effectiveness of proposed patient resampling and con-
founding balance modules. Combining short-term and long-term re-
wards, DAC outperforms DAC−𝑠ℎ𝑜𝑟𝑡 and DAC−𝑙𝑜𝑛𝑔 , which demon-
strates the effectiveness of the two designed rewards.

Distribution of Actions: Visualization of the action distribution
in the action space on MIMIC-III are shown in Figure 2. The results
show that our model learned similar policies to clinicians onMIMIC-
III dataset. DAC suggests more actions with the higher PEEP and
FiO2. Besides, the learning policies recommendmore frequent lower
tidal volume compared to clinician policy.
Comparison of Clinician and DAC policies: We find that the
mortality rates are lowest in patients for whom clinicians’ actual
treatments matched the actions the learned policies recommend.
Figure 3 shows the relations between mortality rate and mechanical
ventilation setting difference on MIMIC-III. The results show when
patients received lower values of FiO2, PEEP and Tidal Volume,
the mortality rates increase much faster. We speculate the reasons
are two-fold: (i) DAC only recommends high values of FiO2, PEEP
and Tidal volume to the high-risk patients, who still have relatively
higher mortality rates even with optimal treatments; (ii) the high-
risk patients received low-value settings, which further increased
their mortality rates.

Policy adaptation: We adapt the model trained on MIMIC-III to
AmsterdamUMCdb, and Fig. 4 shows the estimated mortality and
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(a) (b) (c)

Figure 3: The relations between mortality rates and mechanical ventilation setting difference (recommended setting - actual
setting) on MIMIC-III dataset.

(a) (b)

Figure 4: Performance of policy adaptation to Amsterda-
mUMCdb dataset over different training size.

WIS with different training sizes on AmsterdamUMCdb. DAC-M is
trained on MIMIC-III and directly validated on AmsterdamUMCdb.
DAC-A is trained on AmsterdamUMCdb and DACPA is pretrained
on MIMIC-III and then adapted to AmsterdamUMCdb. The results
show that with transfer learning on AmsterdamUMCdb, DACPA
outperforms DAC-M, which demonstrates that the policy adaption
is very helpful and improves model performance. When training
size becomes smaller, the performance gaps between DACPA and
DAC-A are larger, which demonstrates that the introduced policy
adaption method is useful when adapting trained models to new-
source small-scale datasets.

5 RELATEDWORK
In this section, we briefly review the existing works related to DTR
and causal inference.

DTR learning. During recent years, there have been some studies
that focus on applying RL to the optimal treatment learning from
existing (sub)optimal clinical datasets. Komorowski et al. [12] pro-
posed AI Clinician model which uses a Markov decision process
(MDP) to model patients’ health states and learns the treatment
strategy to prescribe vasopressors and IV fluids with Q-learning.
Raghu et al. [18] uses a similar model to AI Clinician to learn the
optimal DTR policies for mechanical ventilation and achieves lower
estimated mortality rates than human clinicians. [22] expands on
Komorowski’s initial work by proposing a Dueling Double Deep Q

network Q-learning model with a continuous state space and intro-
duces a continuous reward function to train the model. They show
that for patients with higher severity of illness, due to a lack of data,
the model did not outperform the human clinicians. [19] presents
mixture-of-experts (MoE) to combine the restricted DRL approach
with a kernel RL approach selectively based on the context and
find that the combination of the two methods achieves a lower
estimated mortality rate. [29] proposes a new Supervised Reinforce-
ment Learning with Recurrent Neural Network (SRL-RNN) model
for dynamic treatment regime, which combines the indicator signal
and evaluation signal through the joint supervised learning and RL.
The experiments demonstrate that the introduced supervised learn-
ing is helpful for stably learning the optimal policy. Although the
DTR learning algorithms can achieve high performance on treat-
ment recommendation tasks, the learned policies could be biased
without the consideration of confounding issues.

DTR learning with causal inference. Causal inference [8, 17, 23]
has been used to empower the learning process under noisy obser-
vation and can provide interpretability for decision-making models
[2–4, 10, 25]. In this paper, we focus on the related work of DTR
learning with causal inference. Zhang and Schaar [35] propose a
gradient regularized V-learning method to learn the value func-
tion of DTR with the consideration of time-varying confounders.
Bica et al. [4] present a Counterfactual Recurrent Network (CRN)
to estimate treatment effects over time and recommend optimal
treatments to patients. Yang et al. [32] investigates the resilience
ability of an RL agent to withstand adversarial and potentially cata-
strophic interferences and proposed a causal inference Q-network
(CIQ) by training RL with additional inference labels to achieve
high performance in the presence of interference. Bica et al. [5]
propose a counterfactual inverse reinforcement learning (CIRL) by
integrating counterfactual reasoning into batch inverse reinforce-
ment learning. From a conceptual point of view, the studies most
closely related to ours are [5, 32] and we compare the proposed
DAC with them. Both two studies incorporate causal inference
into RL models. The key difference between ours and theirs are:
(i) we resample the patients and the training DAC with balanced
mini-batch can improve the model performance; (ii) we design a
short-term reward that can further remove the confounding; (iii)
our model is based on actor-critic framework and the critic network
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can provide more accurate rewards with the help of the patient
resampling module and short-term reward; (iv) we introduce a pol-
icy adaptation method to the proposed DAC, which can efficiently
adapt trained models to new-source environments.

6 CONCLUSION
In this paper, we investigate the confounding issues and data im-
balance problem in clinical settings, which could limit optimal DTR
learning performance of RL models. The training of most existing
DTR learning methods is guided by the long-term clinical outcomes
(e.g., 90-day mortality), so some optimal treatment actions in the
history of non-survivors might be punished. To address the issues,
we propose a new deconfounding actor-critic network (DAC) for
mechanical ventilation dynamic treatment regime learning. We
propose a patient resampling module and a confounding balance
module to alleviate the confounding issues. Moreover, we intro-
duce a policy adaptation method to the proposed DAC to trans-
fer the learned DTR policies to new-source datasets. Experiments
on a semi-synthetic dataset and two publicly available real-world
datasets (i.e., MIMIC-III and AmsterdamUMCdb) show that the pro-
posed model outperforms state-of-the-art methods, demonstrating
the effectiveness of the proposed framework. The proposed model
can provide individualized treatment decisions that could improve
patient outcomes.
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A SEMI-SYNTHETIC DATASET BASED ON
MIMIC-III

As the MIMIC-III dataset is real-world observational data, it is
impossible to obtain the potential outcomes for underlying counter-
factual treatment actions. To evaluate the proposed model’s ability
to learn optimal DTR policies, we further validate the method in
a simulated environment. The treatment assignments 𝑎𝑡 at each
time stamp are influenced by the confounders 𝑞𝑡 , which are con-
sist of state confounders 𝑠𝑡 and time-varying covariates 𝑜𝑡 . We
first simulate 𝑜𝑡 and 𝑠𝑡 for each patient at time 𝑡 following 𝑝-order
autoregressive process [15] as,

𝑜𝑡, 𝑗 =
1
𝑝

𝑝∑︁
𝑟=1
(𝛼𝑟,𝑗𝑜𝑡−𝑟, 𝑗 + 𝛽𝑟𝑎𝑡−𝑟 ) + 𝜂𝑡

𝑠𝑡, 𝑗 =
1
𝑝

𝑝∑︁
𝑟=1
(𝜇𝑟,𝑗𝑠𝑡−𝑟,𝑗 + 𝜐𝑟𝑎𝑡−𝑟 ) + 𝜖𝑡

(14)

where 𝑜𝑡, 𝑗 and 𝑠𝑡, 𝑗 denote the 𝑗-th column of 𝑜𝑡 and 𝑠𝑡 , respectively.
For each 𝑗 , 𝛼𝑟, 𝑗 , 𝜇𝑟,𝑗 ∼ N(1 − (𝑟/𝑝), (1/𝑝)2) control the amount of
historical information of last p time stamps incorporated to the cur-
rent representations. 𝛽𝑟 , 𝜐𝑟 ∼ N(0, 0.022) controls the influence of
previous treatment assignments. 𝜂𝑡 , 𝜖𝑡 ∼ N(0, 0.012) are randomly
sampled noises.

To simulate the treatment assignments, we generate 10, 000 sur-
vivor patients and 10, 000 non-survivor patients. The confounders
𝑞𝑡 at time stamp 𝑡 and outcome𝑦 can be simulated using the hidden
confounders and current covariates as follows,

𝑞𝑡 =
1
𝑡

𝑡∑︁
𝑟=1

𝑠𝑟 + 𝑔(𝑜𝑡 )

𝑦 = 𝑤⊤𝑞𝑇 + 𝑏
(15)

where𝑤 ∼ U(−1, 1) and 𝑏 ∼ N(0, 0.1). The function 𝑔(·) maps 𝑜𝑡
into the hidden space.

B EVALUATION METRICS
The evaluation metrics for treatment recommendation is still a chal-
lenge [7, 29]. Thus we try different evaluation metrics to compare
the proposed model with the state-of-art methods.
Estimated mortality: Following [22, 29, 30], we use the estimated
in-hospital mortality rates to measure whether policies would even-
tually reduce the patient mortality or not. Specifically, we train a
mortality risk prediction model, which takes the patient states and
next actions as inputs, and output mortality risks. The predicted
mortality risks are discretized into different units with small inter-
vals shown in the x-axis of Figure 5. Discharged patients dominate
both datasets, so the predicted mortality rates are smaller than the
actual mortality rate in the real-world clinical setting. We adjusted
the predicted mortality rate to calculate a new estimated mortality
rate. Given an example denoting an admission of a patient, if the
patient died in hospital, all the predicted mortality rates belonging
to this admission are associated with a value of mortality and the
corresponding units add up these values. After scanning all test
examples, the average estimated mortality rates for each unit are
calculated, shown in y-axis of Figure 5. Based on these results, the
estimated mortality rates corresponding to the predicted mortality

(a) (b)

Figure 5: The positive correlations between estimated mor-
tality rate and predicted mortality probability on MIMIC-III
and AmsterdamUMCdb datasets.

rate of different policies are used as the measurements to denote
the estimated in-hospital mortality. Although the estimated mortal-
ity does not equal the mortality in the real-world clinical setting,
it is a universal metric currently for computational testing. The
relations between estimated mortality rate and predicted mortality
probability are shown in Figure 5.
Weighted importance sampling(WIS): Following [12, 22], we
also implement a high-confidence off-policy evaluation (HCOPE)
method (WIS). The human clinician policy is defined as 𝜋0, and 𝜋1
denotes the learned AI policy. We defined 𝜌𝑡 = 𝜋1 (𝑎𝑡 , 𝑠𝑡 )/𝜋0 (𝑎𝑡 , 𝑠𝑡 )
as the per-step importance ratio, where (𝑎𝑡 , 𝑠𝑡 ) represent the 𝑡𝑡ℎ
actual (action, state) pair for a patient. 𝜌1:𝑡 = 𝜋𝑡

𝑡 ′=1𝜌𝑡 ′ is the cumula-
tive importance ratio up to step 𝑡 and𝑤𝑡 =

∑ |𝐷 |
𝑖=1 𝜌

(𝑖)
1:𝑡 /|𝐷 | denotes

the average cumulative importance ratio at horizon 𝑡 in dataset 𝐷
and |𝐷 | as the number of trajectories in 𝐷 . The trajectory-wise WIS
estimator is given by:

𝑉𝑊𝐼𝑆 =
𝜌1:𝐻
𝑤𝐻
(
𝐻∑︁
𝑡=1

𝛾𝑡−1𝑅𝑡 ), (16)

where𝐻 denotes the length of steps for the patient and𝑅𝑡 denote the
long-term reward. Then, the WIS estimator is the average estimate
over all trajectories, namely:

𝑊𝐼𝑆 =
1
|𝐷 |

|𝐷 |∑︁
𝑖=1

𝑉
(𝑖)
𝑊𝐼𝑆

, (17)

where 𝑉 (𝑖)
𝑊𝐼𝑆

is WIS applied to the trajectory for 𝑖𝑡ℎ patient.
Action accuracy rate: Following [5, 32], we compute the opti-
mal action accuracy rate to evaluate the models’ performance to
learn optimal DTR policies in simulated environments. Mechanical
ventilator has three important parameters: PEEP, Vt and FiO2. We
compute two kinds of accuracy rates: ACC-3 (whether the three
parameters are set the same as the optimal action simultaneously)
and ACC-1 (whether each parameter is set correctly). The metrics
are computed as follows:

𝐴𝐶𝐶 − 3 = 1
|𝐷 |

|𝐷 |∑︁
𝑖=1

1
𝑇

𝑇∑︁
𝑡=1

𝑓 (𝑎𝑝𝑡 , 𝑎
𝑝
𝑡 ) ∗ 𝑓 (𝑎

𝑣
𝑡 , 𝑎

𝑣
𝑡 ) ∗ 𝑓 (𝑎

𝑓
𝑡 , 𝑎

𝑓
𝑡 ),

𝐴𝐶𝐶−1 = 1
|𝐷 |

|𝐷 |∑︁
𝑖=1

1
𝑇 ∗ 3

𝑇∑︁
𝑡=1

𝑓 (𝑎𝑝𝑡 , 𝑎
𝑝
𝑡 )+ 𝑓 (𝑎

𝑣
𝑡 , 𝑎

𝑣
𝑡 )+ 𝑓 (𝑎

𝑓
𝑡 , 𝑎

𝑓
𝑡 ), (18)

𝑓 (𝑎, 𝑏) =
{
1 if 𝑎 = 𝑏

0 else
,
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(a) (b) (c)

Figure 6: Visualization of the action distribution in the 3-dimensional action space on AmsterdamUMCdb.

(a) (b) (c)

Figure 7: The relations between mortality rate and medicine dose gaps between human clinician and DAC policies on Amster-
damUMCdb.

(a) (b)

Figure 8: Mortality-expected-return curve computed by the
learned policies

where 𝑎𝑝𝑡 , 𝑎
𝑣
𝑡 , 𝑎

𝑓
𝑡 are recommened actions for PEEP, Vt and FiO2,

𝑎
𝑝
𝑡 , 𝑎

𝑣
𝑡 , 𝑎

𝑓
𝑡 are optimal actions.

C ADDITIONAL EXPERIMENTAL RESULTS
The relations between expected returns and mortality rates are
shown in Figure 8. The results show that our model has a more
clear negative correlation between expected returns and mortality
rates than DQN in both MIMIC-III and AmsterdamUMCdb datasets.
The reason might be two-fold: (i) DQN is trained on the initial EHR
data with confounder bias; (ii) DQN punishes the actions used for
patients who suffer from mortality, while some actions might be
optimal.
Distribution of Actions: Visualization of the action distribution in
the 3-dimensional action space on AmsterdamUMCdb are shown in
Figure 6. The results show that the proposed model learned similar

(a) (b)

Figure 9: Hyper-parameter optimization

policies to clinicians. DAC suggests more actions with higher PEEP
and FiO2. Besides, the learning policies recommend more frequent
lower tidal volume compared to clinician policy.
Comparison of Clinician and DAC policies: We find that the
mortality rates are lowest in patients for whom clinicians’ actual
treatments matched the actions the learned policies recommend
both on MIMIC-III and AmsterdamUMCdb datasets. Figure 7 shows
the relations between mortality rate and mechanical ventilation
setting difference on AmsterdamUMCdb.
Hyper-parameter optimization: Figure 9 shows the optimization
of parameter 𝛼 on MIMIC-III dataset. We find the model perfor-
mance is not sensitive when 0.05 ≤ 𝛼 ≤ 0.2. We set 𝛼 = 0.1 when
training the DAC model. Because the long-term rewards’ value
range (i.e., from -15 to +15) is wider than short-term rewards’ value
range (i.e., from -1 to +1), the weight of long-term reward is smaller
than the weight of short-term reward.

 

2326


	Abstract
	1 Introduction
	2 Problem Formulation
	3 Method
	3.1 Deconfounding Module
	3.2 Actor-Critic Framework
	3.3 Policy adaptation

	4 Experiments
	4.1 Datasets
	4.2 Methods for comparison
	4.3 Evaluation Metrics
	4.4 Result Analysis

	5 Related Work
	6 Conclusion
	7 Acknowledgments
	References
	A Semi-synthetic dataset based on MIMIC-III
	B Evaluation Metrics
	C Additional Experimental Results



