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ABSTRACT
Sepsis is a heterogeneous clinical syndrome that is the leading cause
of mortality in hospital intensive care units (ICUs). Identification of
sepsis subphenotypes may allow for more precise treatments and
lead to more targeted clinical interventions. Recently, sepsis subtyp-
ing on electronic health records (EHRs) has attracted interest from
healthcare researchers. However, most sepsis subtyping studies ig-
nore the temporality of EHR data and suffer from missing values. In
this paper, we propose a new sepsis subtyping framework to address
the two issues. Our subtyping framework consists of a novel Time-
Aware Multi-modal auto-Encoder (TAME) model which introduces
time-aware attention mechanism and incorporates multi-modal
inputs (e.g., demographics, diagnoses, medications, lab tests and
vital signs) to impute missing values, a dynamic time warpping
(DTW) method to measure patients’ temporal similarity based on
the imputed EHR data, and a weighted k-means algorithm to clus-
ter patients. Comprehensive experiments on real-world datasets
show TAME outperforms the baselines on imputation accuracy.
After analyzing TAME-imputed EHR data, we identify four novel
subphenotypes of sepsis patients, paving the way for improved
personalization of sepsis management.
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•Applied computing→Health informatics; • Social and pro-
fessional topics → Medical records; • Mathematics of comput-
ing →Time series analysis.
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Figure 1: An example segment of a patient’ EHR data inside
an admission. The patient has demographics information, a
set of diagnoses, lots of collections of variables (including
lab tests and vital signs), a set of medications. In each col-
lection, different variables may have missing values. Time
spans between two successive collections can vary. Themed-
ications are prescribed at different time, and the prescrip-
tion periods can also vary. Such time irregularity and miss-
ing values result in a significant challenge in sepsis subtyp-
ing from EHRs.
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1 INTRODUCTION
Sepsis, defined as life-threatening organ dysfunction in response
to infection, contributes to up to half of all hospital deaths and is
associated with more than $24 billion in annual costs in the United
States [11]. Treating a septic patient is highly challenging because
individual patients respond differently to medical interventions.
Identification of sepsis subphenotypes may lead to more precise
treatments and more targeted clinical interventions.

Over the past few decades, the rapid growth in volume and diver-
sity of electronic health records (EHRs) makes it possible to apply
machine learning and data mining methods to subtype patients
based on their EHR data. EHRs are temporal sequence data and
consist of demographics, diagnoses, medications, lab results, vital
signs, and other information, as is shown in Figure 1. Existing sepsis
subtyping models [8, 14] cluster patients based on the aggregations
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of important clinical variables (e.g., heart rate and respiratory rate)
during the first day in ICU stays. There are two main limitations
of the existing studies. (i) The existing sepsis subtyping frame-
works [8, 14] adopt the aggregation of clinical variables to compute
the patient similarity, which ignores the variables’ temporality, an
important characteristic of EHR data. (ii) Most existing subtyping
models [8, 14, 20, 23] suffer from missing values and some mod-
els [8] even exclude the patients with variables with high missing
rates. However, the variables used to subtype sepsis patients have
various missing rates. Especially in the early stage of patient admis-
sions and ICU stays, many variables’ missing rates are relatively
high. Both the exclusion of patients with high missing rate data and
simple imputation models (e.g., mean imputation used in [20] and
MICE [3] used in [14, 23]) are not very suitable for sepsis subtyping.

In this study, we propose a novel sepsis subtyping framework to
address the issues. Our subtyping framework consists of three steps
to group sepsis patients. The first step is to impute missing values
with a novel Time-AwareMulti-modal auto-Encoder (TAME) model.
TAME encodes multi-modal inputs (e.g., demographics, diagnoses,
medications, lab tests, and vital signs) and decodes the values of
sepsis-related variables.We propose a time gap embedding and time-
aware attention for TAME to take account of the irregular time
gaps between collections and variables’ longitudinal information.
Moreover, to handle various numbers of observed values in different
collections and combine multi-modal data, we propose a new value
embedding to project variables and their values into an embedding
space while retaining the values’ continuity so that similar values
have similar embeddings. The second step is to adopt dynamic time
warpping (DTW) [13] to calculate the temporal similarity between
patients with the imputed data. The third step is to cluster the
patients with weighted k-means, which assigns weights for the
patients in a group when computing the distances between the
group and patients.

To demonstrate the efficacy of the proposed model, we conduct
imputation experiments on two publicly available datasets: DACMI1
and MIMIC-III [9]. The results show our model outperforms the
baselines. Moreover, based on the imputed EHR data, we group
sepsis patients using their first 24 hours’ worth of data in ICUs into
four meaningful subphenotypes. The experimental results show
that both the well-imputed EHR data and the weighted k-means
algorithm can significantly improve the subtyping performance.
Finally, we analyze the characteristics of the four subphenotypes
and discuss their potential for sepsis personalized medicine.

In sum, our contributions are as follows:

• We design a new patient subtyping framework that inte-
grates clinical data imputation model TAME, temporal simi-
larity analysis with DTW, and a weighted k-means method
to identify sepsis subphenotypes on EHR data.
• We develop a new imputation model TAME that can handle
multi-modal inputs and incorporate cross-modal relations.
• We incorporate value embedding to represent each variable
value into a vector so that TAME can handle varying num-
bers of missing values across collections.

1http://www.ieee-ichi.org/2019/challenge.html

• We introduce time embedding and time-aware attention to
TAME to consider collections’ irregular time intervals and
variables’ longitudinal information.
• Finally, we demonstrate the effectiveness of our methods
experimentally on two real-world EHR data. By using only
EHR data from the first 24 hours of patients’ ICU stay, we
identify four novel subphenotypes with different clinical
characteristics and mortality trajectories, paving the way for
personalized medicine for sepsis.

The rest of the paper is organized as follows. In Section 2, we
describe technical details of the proposed sepsis subtyping frame-
work. In Section 3, we conduct experiments on two real-world
EHR datasets. We review the related studies in Section 4. Section 5
concludes our work.

2 METHODOLOGY
In this section, we propose a new time-Aware Multi-modal auto-
Encoder (TAME) model to impute missing values in EHR data.
Then we leverage Dynamic Time warpping (DTW) [13] to compute
patient similarity. Finally, we present aweighted k-means to identify
subgroups of sepsis patients.

2.1 Data Imputation with TAME
TAME takes multi-modal data as inputs by embedding them into a
same space. Then a max-pooling layer is used to combine the multi-
modal data’s information and output fixed-size vectors, which are
sent to BiLSTM tomodel the time series data and predict themissing
values. The framework of TAME is shown in Figure 2.

2.1.1 Basic Notations. A patient has demographics information
De (including age a and gender д) and at least one admission.
Following [14] and [8], our subtyping framework treats various
admissions of the same patients as different samples. In an ad-
mission, the patient has diagnoses D = [d1,d2, ...,d |D |] ∈ N |D | ,
a collection of variables (i.e., lab test data and vital sign data),
denoted by X = [x1, x2, ..., x |X |] ∈ R |X |×Kx , and medications
M = [m1,m2, ...,m |M |] ∈ N |M | . At time t , the patient is taking
a set of medicationsMt ⊆ {1, 2, ..., |M |}.

To address the missing values, we introduce two masking matrix
C = [c1, c2, ..., c |X |], A = [a1,a2, ...,a |X |] ∈ {0, 1} |X |×Kx to indi-
cate whether the values in X are missing or not. It is initialized as
follows:

cit =

{
1 if x it is observed in input data,
0 else,

(1)

ait =

{
1 if cit = 0 & x it is observed in ground truth,
0 else,

(2)

where i denotes the ith variable. A is only used to compute imputa-
tion loss and validate imputation performance.

The time gaps between collections with observed data carries
essential information. Hence, we further introduce three time gap
vector and matrices ∆ ∈ R |X | , ∆(l ) ∈ R |X |×Kx , ∆(n) ∈ R |X |×Kx . ∆t
means the time gap between current collection t and the last collec-
tion t − 1. ∆(l ),it denotes the time gap between current collection
t and the collection where the ith variable is observed last time.
∆
(n),i
t denotes the time gap between current collection t and the
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Figure 2: Framework of TAME. TAME takes multi-modal data as inputs, including demographics, diagnoses, variables (i.e.,
lab tests and vital signs), medications. A patient may take varying numbers of medications and have varying numbers of
missing values at different time. Thus, the input dimensions can vary across collections. By concatenating the embeddings
of the inputs, we obtain a matrix Et containing multi-modal information. A pooling layer is followed to output a fixed-size
vector et , which is sent to BiLSTM. At last, a time-aware attention module is used to attend the longitudinal information and
then impute the missing values.

collection where the ith variable is observed next time. ∆(l ) and
∆(n) are initialized as follows:

∆
(l ),i
t =

{
∆t if cit−1 = 1,
∆
(l ),i
t−1 + ∆t else

(3)

∆
(n),i
t =

{
∆t+1 if cit+1 = 1,
∆
(n),i
t+1 + ∆t+1 else

(4)

TAME also takes the neighbouring observed values as inputs
to incorporate longitudinal information. Thus, we introduce two
neighbouring value matrices X (l ) = [x (l )1 , x

(l )
2 , ..., x

(l )
|X |] ∈ R

|X |×Kx

and X (n) = [x
(n)
1 , x

(n)
2 , ..., x

(n)
|X |] ∈ R |X |×Kx , which denote the ob-

served values of the last and next time.

x
(l ),i
t =

{
x it−1 if cit−1 = 1,
x
(l ),i
t−1 else

(5)

x
(n),i
t =

{
x it+1 if cit+1 = 1,
x
(n),i
t+1 else

(6)

where x it , x
(l ),i
t and x (n),it denote the values of the ith variable of

xt , x
(l )
t and x (n)t respectively.

2.1.2 Multi-Modal Embedding. We embed multi-modal inputs as
vectors and then map them into a same space. A max-pooling layer
is followed to combine the multi-modal information.

Demographics, Diagnosis andMedication Embedding. For
patients’ demographics, their ages are coded to several age groups
(i.e., < 30, 30-40, 40-50, etc.). Each patient’s age group and gender
are sent to an embedding layer and represented by an embedding
matrix ED

e
∈ R2×k . In the same way, we obtain the embeddings

of diagnoses, ED = [ed1 , e
d
2 , ..., e

d
|D |] ∈ R |D |×k , and medications

EM = [em1 , e
m
2 , ..., e

m
|M |] ∈ R

|M |×k .
For medications, we consider their prescription periods but ig-

nore their doses, while diagnoses are valid in the whole admission.
At time t , the patient is taking a set of medicationsMt . The corre-
sponding embedding matrix is EMt = [e

m
t1 , e

m
t2 , ..., e

m
t |Mt |
] ∈ R |Mt |×k ,

where t∗ ∈ Mt .
Variable Value Embedding. For variables, we propose a novel

value embedding to map the values into vectors. Given a variable i
and the observed values in the whole dataset, we sort the values
and discretize the values into V sub-ranges with equal number of
observed values in each sub-range. The variable i is embedded into
a vector ei ∈ Rk with an embedding layer. As for the sub-range
v(1 ≤ v ≤ V ), we embed it into a vector e ′v ∈ R2k :

e ′vj = sin(
v ∗ j

V ∗ k
)

e ′vk+j = cos(
v ∗ j

V ∗ k
),

(7)

where 0 ≤ j < k . By concatenating ei and e ′v , we obtain vector
containing both the variable’s and its value’s information. A fully
connected layer is followed to map the concatenation vector into a
new value embedding vector eiv ∈ Rk .

eiv = [ei ; e ′v ]Wiv + biv , (8)

whereWiv ∈ R
3k×k ,biv ∈ Rk are learnable parameters. By stacking

the observed values’ embedding vectors in the same collection t ,
we obtain the embedding matrix of the t th collection variables xt

as EXt ∈ R
nt×k , where nt =

∑
i (c

i
t ). Due to the missing values, the



length of EXt can vary. In the sameway, we generate the embeddings
of x (l )t , x

(n)
t as EX ,(l )

t , E
X ,(n)
t ∈ RKx×k , 1 ≤ t ≤ |X |.

Time Embedding. In order to incorporate the elapsed time
between observed values, we present a time embedding for the
time gap matrices ∆, ∆(l ) and ∆(n). Given a time gap δ , our time
embedding layer outputs a vector eδ ∈ R2k :

eδj = sin(
δ ∗ j

Tm ∗ k
)

eδk+j = cos(
δ ∗ j

Tm ∗ k
),

(9)

where 0 ≤ j < k , Tm denotes the maximum of time gap (0 < δ ≤
Tm ). By mapping each time gap value into a vector, we obtain the
embeddings of ∆, ∆(l ), ∆(n) as e∆ ∈ R |X |×2k , e∆,(l ) ∈ R |X |×Kx×2k

and e∆,(n) ∈ R |X |×Kx×2k .
The proposed value embedding and time embedding remain an

important feature of values (time gaps) that similar values (time
gaps) are embedded into similar vectors. Moreover, after mapping
values into vectors, the embedding bridges multi-modal inputs and
makes it possible to handle varying numbers of missing values in
different collections.

2.1.3 Multi-modal Embedding Combination. Given the embedding
matrices of various EHR data, ED

e
, ED , EMt , EXt ∈ R

∗×k , we adopt
fully connected layers to project them into a same semantic space.
Then we concatenate the results in the new semantic space and
obtain a matrix Et ∈ R∗×k , which contains multi-modal informa-
tion at time t . Due to the missing values and varying numbers of
medication at different time, the lengths of Et are varying. A max-
pooling layer is followed to map Et to an vector et ∈ Rk . We can
assume that a well-trained model can ensure that et keeps essential
information of Et . Then et is sent to the LSTM auto-encoder.

2.1.4 BiLSTM Architecture. Given a sequence of multi-modal em-
bedding vectors et , we build our model based on bidirectional LSTM
for its ability to recall long term information. To incorporate the
irregular time gaps between successive collections, the time gap
embedding vector e∆t is also input to our auto-encoder. The bidirec-
tional LSTM model can be described as follows:

êt = etWe + e
∆
t W∆ + be

→

h1,
→

h2, ...,
→

h |X |=
−→

LSTM (ê1, ê2, ..., ê |X |)
←

h1,
←

h2, ...,
←

h |X |=
←−

LSTM (ê1, ê2, ..., ê |X |)

ht = [
→

ht ;
←

ht ] for t = 1, 2, ..., |X |,

(10)

where
−→

LSTM and
←−

LSTM are forward and backward directional
LSTM respectively,We ∈ R

k×k ,W∆ ∈ R
2k×k , be ∈ Rk are learnable

parameters. ht ∈ R2k is the concatenation of
→

ht and
←

ht .

2.1.5 Time-Aware Attention. In order to incorporate the longitu-
dinal information of observed values, we introduce a time-aware
attention module to attend the latest observed values of the vari-
ables. Given the time gap embedding matrices e∆,(l )t , e∆,(n)t , and
value embedding matrices EX ,(l )

t , EX ,(n)
t , we map the latest ob-

served variables along with their corresponding time gaps into a
new space.

Figure 3: Clustering patients with TAME, DTW andweighed
k-means. Takingmulti-modal data as inputs, TAME imputes
missing values. The imputed results are used to compute
temporal similarities between patientswithDTW.Weighted
k-means is leveraged to cluster the patients into subpheno-
types based on the patient similarity matrix.

v
(l )
t = e

∆,(l )
t Wl ,∆ + E

X ,(l )
t Wl ,e + bl

v
(n)
t = e

∆,(n)
t Wn,∆ + E

X ,(n)
t Wn,e + bn,

(11)

whereWl ,∆,Wn,∆ ∈ R2k×k ,Wl ,e ,Wn,e ∈ Rk×k , bl ,bn ∈ Rk are
learnable parameters. By concatenating v(l )t and v(n)t , we obtain a
embedding matrix vt ∈ R2Kx×k . Then the attention mechanism is
designed to automatically focus on useful longitudinal information.
It takes ht , vt as inputs and generate an attention result vat ∈ R

k .

vat =
∑
i
vt ,i ∗ αt ,i

αt ,i =
exp(βt ,i )∑
i exp(βt ,i )

βt ,i = vt ,iWβ + htWh + bβ ,

(12)

whereWh ∈ R
2k ,Wβ ∈ R

k ,bβ ∈ R are learnable parameters.

2.1.6 Output and Objective Function. Given the LSTM output vec-
tor ht and time-aware attention result vat , we leverage a fully con-
nected layer to output the missing values.

x̃t = v
a
tWx ,v + htWx ,h + bx , (13)

whereWx ,v ∈ Rk×Kx ,Wx ,h ∈ R2k×Kx , bx ∈ RKx are learnable
parameters. The imputation loss is the mean square error between
the ground truth x̂t and predictions x̃t for the t th collection.

lt (x̃t , x̂t ) =

∑
i c

i
t (x̃

i
t − x̂

i
t )
2∑

i c
i
t

+

∑
i a

i
t (x̃

i
t − x̂

i
t )
2∑

i a
i
t

(14)

Themean loss of collections is used to train the model. Algorithm
1 in Supplementary Section describes the training process of TAME.

2.2 Temporal Similarity with DTW
As is shown in Figure 3, after EHR data imputation, we adopt
DTW [13] to compute patient similarity matrix and then cluster the
patients withweighted k-means.We replace themissing values with
the imputed values and obtain an imputed matrix S for each patient.



For patient i , his/her imputed matrix is a sequence of variable
value vectors, denoted by S(i) = [s

(i)
1 , s

(i)
2 , ..., s

(i)
|S (i ) |
] ∈ R |S

(i ) |×Kx .

We denote the sub-sequence of S(i) as S(i)k = [s
(i)
k , s

(i)
k+1, ..., s

(i)
|S (i ) |
].

The distance between S(i) and S(j) is :

Distp (S
(i), S(j)) =

Dist(S
(i)
1 , S

(j)
1 )

max(|S(i) |, |S(j) |)
(15)

Dist(S
(i)
k , S

(j)
l ) = dist(s

(i)
k , s

(j)
l ) +min


Dist(S

(i)
k+1, S

(j)
l )

Dist(S
(i)
k , S

(j)
l+1)

Dist(S
(i)
k+1, S

(j)
l+1),

where dist(s(i)k , s
(j)
l ) is defined with Euclidean distance:

dist(s
(i)
k , s

(j)
l ) = | |s

(i)
k − s

(j)
l | |2 (16)

The boundary condition is as follows:

Dist(S
(i)
k , S

(j)
|S (j ) |
) =

|S (i ) |∑
m=k

dist(s
(i)
m , s

(j)
|S (j ) |
)

Dist(S
(i)
|S (i ) |
, S
(j)
l ) =

|S (j ) |∑
m=l

dist(s
(i)
|S (i ) |
, s
(j)
m )

(17)

2.3 Weighted K-means Clustering
Given the patient similarities (distances), we can leverage k-means
to cluster patients into groups. However, the size of patient subphe-
notypes can be highly imbalanced in clinical settings. For minor
groups, outliers are harmful for the calculation of distances be-
tween patients and groups. Thus we propose a weighted k-means
to mitigate the outliers’ influence by assigning weights for patients
in a group when computing the distances. The distance between
each patient S(i) the group Gk is calculated as follows:

Distд(S
(i),Gk ) =

∑
j ∈Gk

Distp (S
(i), S(j)) ∗w j∑

j ∈Gk
w j

w j = (1 + exp(
∑
l ∈Gk

Distp (S
(j), S(l ))

|Gk |
))−1 j ∈ Gk

(18)

Given the distances between patients and groups, we assign
each patient to the group with the smallest distance. Then the
distances between patients and new groups are calculated again.
The operations repeat until convergence.

3 EXPERIMENTS
In this section, we conduct imputation experiments on two EHR
datasets, DACMI1 and MIMIC-III [9]. Based on the imputed variable
values of MIMIC-III data and the computed patient similarity matrix
with DTW, we identify subgroups of sepsis patients.

3.1 Datasets
Both datasets are publicly available real-world EHRs. The first
dataset is DACMI, which contains 13 clinical lab tests that are
irregularly measured for 8,267 patients. The statistics of DACMI
are listed in Table 4 in Supplementary Section.

The second dataset is derived from MIMIC-III. We select sepsis
patients fulfilling the sepsis-3 criteria [15]. Following [14] and [8],
we only focus on adult patients with sepsis. 11,715 sepsis patients
are obtained. We use the patients’ data to impute the missing values
of 27 sepsis-related variables. The statistics of variables are shown in
Table 5 in Supplementary Section.We extract 191 kinds of diagnoses
and 498 kinds of medications. The diagnoses and medications that
appear less than 100 times are removed. To evaluate imputation
method performance, we randomly mask an observed value for
each variable in each patient’s data. The masked values are used as
ground truth.

3.2 Methods for Comparison
To validate the performance of the proposed framework for the im-
putation task, we implement the following models for comparison.

Mean: The mean values of variables are used to impute the
missing values.

KNN: The average values of the top K most similar collections
are used to impute the missing values.

3DMICE [12]: 3DMICE combines MICE [3] and Gaussian Pro-
cess [7] to impute missing values, which integrates cross-variable
and longitudinal information.

T-LGBM [19]: T-LGBM builds temporal and cross-variable fea-
tures as inputs, and adopts LightGBM [10] to impute missing values.

BRNN [17]: BRNN prefills the missing values for each variable
with the last observed value or mean values of the same variable.
Taking as inputs the prefilled data, BRNN adopts a Bidirectional
RNN to predict the missing values.

CATSI [22]: CATSI consists of twomajor ingredients: the context-
aware recurrent imputation and the cross-variable imputation to
capture longitudinal information and cross-variable relations re-
spectively. A fusion layer is used to produce the final imputations.

DETROIT [21]: DETROIT builds features based on the observed
variables inside five latest collections, and then leverages a network
of 8 fully-connected layers to predict missing values.

BRITS [5]: BRITS adopts bidirectional RNN to impute missing
values. Based on the imputed values, BRITS predicts the values
again. The accumulated loss is used to train the model.

TAME: Time-Aware Multi-modal auto-Encoder (TAME) is our
proposed model to impute the missing values. To evaluate the effec-
tiveness of the proposed operations, including time-aware attention,
multi-modal feature combination and variable value embedding,
we implement another three variant versions of TAME.

TAME−T : TAME−T removes the time-aware attention module
when imputing missing values.

TAME−V : TAME−V removes the variable value embedding. The
method prefills the missing values with mean values and takes the
prefilled values as inputs but not the value embeddings.

TAME−M : TAME−M just takes the variables as inputs but ig-
nores the other modal data when imputing missing values.

3.3 Implement Details
We implement our proposed model with Python 2.7.15 and PyTorch
1.3.02. For training models, we use Adam optimizer with a mini-
batch of 64 patients. The multi-modal data are projected into a 512-d
2https://pytorch.org/

https://pytorch.org/


Table 1: Imputation results for single-modal data on DACMI dataset. The missing rates of these 13 variables are between 1%
and 15% as shown in Table 4 in Supplementary Section.

Method PCL PK PLCO2 PNA HCT HGB MCV PLT WBC RDW PBUN PCRE PGLU Mean

Mean 0.295 0.277 0.301 0.293 0.287 0.292 0.309 0.319 0.299 0.318 0.313 0.306 0.282 0.299
KNN 0.220 0.249 0.241 0.228 0.220 0.221 0.267 0.248 0.251 0.253 0.238 0.244 0.264 0.242

3DMICE [12] 0.200 0.263 0.231 0.214 0.150 0.149 0.229 0.256 0.246 0.185 0.234 0.277 0.224 0.220
T-LGBM [19] 0.135 0.226 0.179 0.156 0.100 0.092 0.229 0.158 0.199 0.202 0.134 0.183 0.240 0.172

BRNN [17] 0.155 0.230 0.196 0.174 0.090 0.087 0.245 0.175 0.211 0.208 0.154 0.210 0.252 0.184
CATSI [22] 0.174 0.243 0.203 0.196 0.144 0.135 0.253 0.186 0.227 0.213 0.157 0.206 0.260 0.200

DETROIT [21] 0.138 0.219 0.172 0.155 0.093 0.087 0.234 0.152 0.199 0.201 0.137 0.181 0.262 0.172
BRITS [5] 0.142 0.208 0.176 0.154 0.121 0.115 0.244 0.165 0.206 0.218 0.167 0.192 0.268 0.183

TAME−T 0.102 0.187 0.144 0.128 0.079 0.074 0.227 0.144 0.199 0.211 0.128 0.201 0.228 0.158
TAME−V 0.121 0.193 0.164 0.145 0.081 0.076 0.238 0.168 0.203 0.201 0.141 0.210 0.222 0.166
TAME 0.100 0.179 0.155 0.125 0.073 0.077 0.218 0.136 0.198 0.180 0.121 0.185 0.221 0.151

Table 2: Imputation results for multi-modal data onMIMIC-III dataset. We impute 27 variables listed in Table 5 in Supplemen-
tary Section. Here, we show the nRMSE of 14 variables with relatively lower missing rates (50% - 90%). M14 and M27 denote
the mean nRMSE of the 14 and all 27 variables respectively. The full experiments results on 27 variables are available here3.

Method AG BCB CRT CLR GLC HMG LCT PLT PTT INR PT SDM BUN WBC M14 M27

Mean 0.29 0.24 0.25 0.22 0.30 0.27 0.42 0.27 0.46 0.32 0.41 0.24 0.24 0.26 0.30 0.37
KNN 0.28 0.22 0.22 0.22 0.30 0.25 0.44 0.26 0.38 0.31 0.29 0.24 0.23 0.25 0.28 0.34

3DMICE[12] 0.22 0.19 0.22 0.18 0.27 0.18 0.42 0.25 0.40 0.25 0.29 0.20 0.22 0.25 0.25 0.32

BRNN [17] 0.15 0.17 0.20 0.13 0.29 0.12 0.40 0.20 0.41 0.16 0.24 0.18 0.17 0.26 0.22 0.30
CATSI [22] 0.12 0.12 0.22 0.13 0.29 0.14 0.41 0.22 0.42 0.20 0.25 0.18 0.20 0.23 0.22 0.29

DETROIT [21] 0.11 0.09 0.28 0.09 0.27 0.13 0.38 0.22 0.46 0.17 0.24 0.10 0.17 0.22 0.21 0.27
BRITS [5] 0.12 0.08 0.23 0.12 0.27 0.12 0.39 0.20 0.41 0.18 0.24 0.16 0.20 0.20 0.21 0.28

TAME−T 0.13 0.11 0.24 0.10 0.25 0.11 0.34 0.19 0.36 0.21 0.24 0.11 0.17 0.20 0.20 0.26
TAME−V 0.16 0.13 0.23 0.12 0.26 0.11 0.36 0.20 0.38 0.19 0.22 0.14 0.17 0.20 0.21 0.26
TAME−M 0.12 0.10 0.21 0.08 0.24 0.11 0.34 0.19 0.37 0.18 0.23 0.12 0.17 0.19 0.19 0.27
TAME 0.11 0.09 0.19 0.08 0.26 0.09 0.35 0.18 0.38 0.15 0.20 0.10 0.14 0.21 0.18 0.25

space (k = 512). We train TAME on 1 GPU (TITAN RTX 6000), with
a learning rate of 0.001. We randomly divide the datasets into 10
sets. All the experiment results are averaged from 10-fold cross
validation, in which 7 sets are used for training every time, 1 set
for validation and 2 sets for test. The validation sets are used to
determine the best values of parameters in the training iterations.
We use MSELoss as loss function to train models.

We normalize the values of variable i as follows:

x i =
x i −mean(x i )

std(x i )
, (19)

where mean and std are the mean value and standard deviation
for the variable i on the whole dataset. When embedding variable
values, we discretize the values into 1000 sub-ranges (V = 1000)
for each variable. We use patients’ first 30 collections data to train
TAME and test all collections data for evaluation. For patients
with collection length < 30, we pad the data with 0 and set the
corresponding values in masking matrices C and A as 0.

Following [12, 21], we measure the models’ performance with
nRMSE. The nRMSE is calculated from the gap between the ground

truth and prediction. Given a variable i , nRMSE is defined as:

nRMSEi =

√√√√∑
j
∑
t a
(j),i
t (x̃

(j),i
t − x̂

(j),i
t )2∑

j
∑
t a
(j),i
t

, (20)

where x̂ (j),it , x̃ (j),it , a(j),it indicate the ground truth, imputed value,
and masking indicator for patient j, variable i in collection t . The
code and more implementation details are available online3.

3.4 Results for Imputation
As is shown in Table 1 and Table 2, TAME achieves the best per-
formance for most variables, which demonstrates its effectiveness.
Note that due to the space limitation, we display the nRMSE of 14
variables with relatively lower missing rates (50% - 90%) and two
mean nRMSE (i.e., the mean nRMSE of 14 variables and 27 vari-
ables, denoted by M14 and M27) in Table 2. Due to two variables’
high missing rates (99% for C-Reactive and Bands), M27’s nRMSE
is much higher than M14.
3https://github.com/yinchangchang/TAME

https://github.com/yinchangchang/TAME


Figure 4: Clustering results on Calinski-Harabasz Index and
Davis-Bouldin Index. Note that higher Calinski-Harabasz
Index and lower Davies-Bouldin Index relate to a model
with better separation between the clusters.

The overall performance of traditional machine-learning ap-
proaches is worse than the deep learning approaches. Mean and
KNN do not capture the longitudinal and cross-variable relations,
which are essential for accurate imputation. 3DMICE considers the
relations, but cannot model the patients’ health state trends like
RNN. T-LGBM achieves comparable performance to deep learning
models. But the feature engineering of T-LGBM is complicated and
hand-designed, which limits its generalization to other datasets.
Since we don’t have access to its feature engineering details, the
experiment of T-LGBM is not conducted on MIMIC-III dataset. Its
results on the DACMI dataset are obtained from [19].

With the consideration of the longitudinal and cross-variable
information, the four deep learning baselines perform much better
than the traditional machine learning models on average. Among
the four deep learning methods, DETROIT directly predicts missing
values based on latest collections’ values, which makes it easier
to learn longitudinal information. BRITS considers the time gaps
between collections, which is also helpful to learn longitudinal infor-
mation. Thus, the two models outperform the other deep learning
baselines. However, all the baselines suffer from the same limitation
that their networks take fixed-size vectors as inputs and therefore
need to prefill the missing values. BRNN and DETROIT explicitly
prefill the missing values with mean or the last observed values.
CASTI and BRITS introduce a mask value to indicate whether each
variable is observed (= 1) or not (= 0); they take the product of the
observed value and mask value as input. This masking operation
is the same as to prefill the missing values with 0. Their prefilling
operations bring data bias, which limits the models’ performance.
Moreover, they do not incorporate other modal data (e.g., diagnoses
and medications), which also contain a lot of patients’ health state
information and can help impute the missing values.

TAME outperforms the baselines for most variables. TAME can
handle varying numbers of missing variables with value embedding
without any prefilling operation, which avoids the prefilling bias
and thus can improve the imputation performance. By removing
the value embedding, there is an obvious performance decline of

Figure 5: ICUmortality rates of subphenotypes.We only use
data available up to the first 24 hours in ICUs for the pa-
tient subtyping and show the ICUmortality rates during the
whole ICU stays (range from 1 to 153 days). The identified 4
subphenotypes have very different mortality trajectories.

TAME−V compared to TAME. Value embedding also makes it possi-
ble to combine multi-modal inputs by mapping all the embeddings
into a same space. Note that there isn’t multi-modal data such as
diagnoses and medications on the DACMI dataset, and the three
versions of TAME only take the single-modal variables data as in-
puts. By comparing the performance of TAME and TAME−M on
MIMIC-III dataset, we find that multi-modal inputs can also im-
prove the imputation results. Moreover, our time-aware attention
module explicitly attends the latest observed values, which makes
it easier to capture the longitudinal information. Thus compared to
TAME−T , TAME achieves better performance.

3.5 Sepsis Subtyping
Sepsis subphenotypes are usually identified based on vital signs
and lab tests data. Early identification of sepsis subphenotypes is a
crucial factor in improving the treatment outcomes. To demonstrate
the effectiveness of our early sepsis subtyping framework, we only
use patients’ data available up to the first 24 hours in ICUs to impute
the missing values and to group patients with the imputed results.

We leverage TAME to impute the missing values and replace
them with imputed results. Then, we adopt DTW to compute the
patient similarity matrix. Finally, we use a weighted k-means to
cluster the sepsis patients into subphenotypes. In this subsection,
we conduct experiments to demonstrate whether well-imputed data
can help the following subtyping task. Thus, we compare TAME
with other strategies to handle missing values: No-Imp (we ignore
the variables with missing values when computing patient simi-
larity, and do not impute the values) and Mean-Imp (we impute
the missing values with mean values of variables). Moreover, we
also compare weighted k-means (wk-means) with the traditional
k-means method. Both our framework and baselines adopt DTW to
compute temporal similarity for longitudinal EHR data of patients.

K-means based models need a suitable K value when conducting
clustering experiments. We group patients into different K clusters



and then compute the average P −value for the clustering results.
As is shown in Figure 6 in Supplementary Section, K = 4 is the
best option. Given the imputed data and K , our clustering results
are shown in Figure 4. Because there is no label for the patient
subtyping task, we cannot measure the models’ performance with
metrics like Rand Index or NMI which require the knowledge of
the ground truth classes. We evaluate our framework and the base-
lines with two popular metrics Calinski-Harabasz Index (CHI) [4]
and Davis-Bouldin Index (DBI) [6], which can measure the perfor-
mance of clustering algorithms on label-unknown dataset. Note
that CHI is related to the size of the dataset, we normalize the value
by dividing CHI by the number of the patients. As is shown in Fig-
ure 4, TAME &wk-means performs the best, which demonstrates
the proposed framework’s effectiveness. TAME based frameworks
achieve better performance than other imputation based frame-
works, which demonstrates that well-imputed data do improve the
patient subtyping outcomes. Moreover, by comparing to the results
of k-means based frameworks, the weighted k-means based frame-
works’ results show better performance, which demonstrates the
effectiveness of the weighted k-means in the sepsis subtyping task.
3.5.1 Subphenotypes Analysis. After subtyping the septic patients,
we further analyze the subtyping results. All variables used in the
clustering method show significant difference across clusters (all
P −values < 0.01 and average P −value = 4.1 × 10−5 as shown in
Figure 6 (K = 4) in Supplementary Section). The proposed subtyp-
ing framework uncovers four subphenotypes with distinct organ
dysfunction patterns in septic patients. Following [18], we calcu-
late the Sepsis-related Organ Failure Assessment (SOFA) scores,
which are used to describe patients’ organ dysfunction, for the four
subphenotypes and overall sepsis population. The details of SOFA
computation can be found in Table 6 in Supplementary Section.
The characteristics of the subphenotypes are given in Table 3. The
subphenotypes have been found to represent the following:

• Minimal OrganDysfunction: The subphenotype has themost
patients, and the lowest SOFA scores and mortality rate.
• Renal Dysfunction: The subphenotype has a higher Renal
SOFA score than the average score of the overall septic pop-
ulation.
• CNS & Respiration Dysfunction: The subphenotype has the
highest CNS and respiration SOFA scores. The subpheno-
type’s mortality rate is much higher than the previous two.
• Maximum Organ Dysfunction: The subphenotype has the
fewest patients but the highest mortality rate. All SOFA com-
ponent scores are higher than average SOFA scores.

The four subphenotypes’ ICUmortality rates are shown in Figure
5. The mortality rates vary significantly across the subphenotypes.
Minimal Organ Dysfunction and Renal Dysfunction have lower
mortality rates (less than 10%), while the other two subphenotypes
are related to much higher mortality rates. Most mortality cases
suffer mortality in the first two weeks in ICU stays. Especially
in the Maximal Organ Dysfunction subphenotype, the mortality
rate grows quickly from the first day. Therefore, it is crucial to
identify the patients’ subphenotypes in the early stage and assign
more precise treatments for them. We further analyze the variables’
distribution across various subphenotypes; the results are shown
in Figure 7 in Supplementary Section.

4 RELATEDWORK
In this section, we briefly review the existing works related to our
models, including patient subtyping and data imputation.

Patient Subtyping. Identification of sepsis subphenotypes is
significant for precise treatments and targeted clinical interventions.
During past decades, many studies have focused on patient subtyp-
ing with EHR data. Seymour et al. [14] aggregate the values of 29
demographics and variables within the first 6 hours of presentation
to the emergency department and adopt k-means to group patients
into subphenotypes. Ibrahim et al. [8] cluster patients with a similar
method to [14]. The main difference is that Ibrahim et al. [8] use 63
vital sign variable values’ aggregation within the first 24 hours of
ICU stays but exclude more patients with high missing rate data.
Both papers compute patient similarity based on the aggregation
of collections of variables, which ignore the significant temporal
information of EHR data. There are also some patient subtyping
studies for diseases other than sepsis. Baytas et al. [2] present an
auto-encoder model, T-LSTM, to learn a single representation for
sequential records of patients, which are then used to cluster pa-
tients into clinical subphenotypes. However, T-LSTM only encodes
Boolean-value clinical events (e.g., diagnosis codes) but not values
of lab tests and vital signs, which are usually used to reflect the
health states of patients with sepsis. The model is more suitable
for subtype patients with chronic diseases such as heart failure but
not acute diseases such as sepsis. In this paper, we propose a new
sepsis subtyping framework that computes the temporal similarity
between patients and clusters the patients based on the similarity
matrix with a weighted k-means.

Data Imputation. The clinical variables used for similarity mea-
surement and patient subtyping usually have some missing values.
Imputation strategies can resolve the problem of missing values
in time series data. Early works [1, 16] exploit statistical attributes
of observed data, such as mean- and median-filling, which clearly
ignore the temporal relations and correlations among variables.
3DMICE [12] combines MICE and Gaussian process to integrate
cross-sectional and longitudinal information and achieves better
imputation performance. In recent years, deep learning models
have become research hotspots and have been applied to time se-
ries data imputation. Suo et al. [17] adopt a bidirectional RNN to
predict the missing values based on the prefilled data. Yan et al.
propose DETROIT [21], which builds features based on the former
and latter two collections for each collection. Given the features,
DETROIT leverages a network of 8 fully connected layers to predict
the missing values. BRITS [5] and CATSI [22] introduce a mask
value to indicate whether each variable is observed (= 1) or not (=
0); they take the product of the observed value and mask value as
input, then adopt bidirectional recurrent neural networks to model
time series data. All the deep learning-based models incorporate
longitudinal and cross-variable features. Although the proposed
models achieve superior performance in multi-variant imputation
tasks, they have two major limitations. The first is that they need to
prefill the missing values to provide fixed-size inputs for networks.
The second is that they cannot handle multi-modal data (e.g., diag-
nosis and medications) as inputs, which are probably helpful for
imputation in clinical settings. In this work, our proposed TAME
well solve the two issues with multi-modal embedding.



Table 3: Cluster descriptive statistics of sepsis subphenotypes. We group patients into four subphenotypes based on their first
24 hours data in ICUs, and display the average of maximum SOFA scores (including six SOFA components and total SOFA)
during the whole ICU stays (range from 1 to 153 days) of patients in each subphenotype and overall sepsis population.

Minimal Organ Renal CNS & Respiration Maximal Organ Overall Sepsis
Dysfunction Dysfunction Dysfunction Dysfunction Population

AVG Age 59.5 62.4 59.2 62.5 60.7
Number of Patients 4,342 3,164 2,410 1,799 11,715

Male/Female 64%/36% 54%/46% 57%/43% 60%/40% 59%/41%
ICU Mortality Rate 4.1% 8.7% 15.9% 42.4% 13.6%

Respiration SOFA 1.5 1.6 2.3 2.3 1.8
Coagulation SOFA 0.6 0.8 0.9 1.6 0.9

Liver SOFA 0.3 0.4 0.6 1.5 0.5
Cardiovascular SOFA 1.4 2.0 1.9 3.0 1.9

CNS SOFA 2.7 2.7 3.6 3.2 2.9
Renal SOFA 3.1 3.5 3.1 3.8 3.3

Total SOFA 8.7 10.1 11.0 14.1 10.4

5 CONCLUSION
We propose a novel clinical data imputation model TAME and
a new patient subtyping framework with DTW and weighed k-
means. TAME incorporates multi-modal data as inputs, embeds
the variables’ values and time gaps, and introduces a time-aware
attention mechanism to generate results for missing values. Our
model can handle varying numbers of observed variables in differ-
ent collections without any prefilling operation and capture the
cross-variable, cross-modal, longitudinal information. Based on the
well-imputed data, we introduce DTW to compute the temporal
similarity matrix. Finally, we present a weighted k-means to group
sepsis patients with the similarity matrix and identify four mean-
ingful subphenotypes. The subphenotypes show different organ
dysfunction patterns and some subphenotypes have a fast-growing
mortality rate in the first one or two weeks. The proposed patient
subtyping framework is much useful to identify patient subpheno-
types in patients’ early stages of ICU stays, which paves the way
for improved personalization of sepsis management.
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7 SUPPLEMENTARY SECTION
7.1 TAME Model and Availability
Algorithm 1 describes the overall training process of TAME. The
codes will be available at Github. Here is the hyperlink3.

Algorithm 1 Time-Aware Multi-modal auto-Encoder (TAME)
Input: Demographics De ,diagnoses D,medicationsM ,variables X ;
Output: Predicted variables X̃ ;
1: repeat
2: for collection t ← 1 to |X | do
3: Obtain the embedding of demographics, diagnose, denoted

by ED
e
∈ R2×k , ED ∈ R |D |×k ;

4: Obtain the embedding of medicationsMt taken at the time
of collection t , represented as EMt ∈ R

|mt |×k ;
5: Obtain the embedding of variables xt in collection t ac-

cording to Eq.(7)(8), represented as EXt ∈ R
|xt |×k ;

6: Combine EDe , ED , EMt , E
X
t , and obtain Et ∈ R

∗×k ;
7: Obtain vector et ∈ Rk by applying a pooling over Et ;
8: Input et to BiLSTM and obtain an output vector ht ;
9: Obtain the embedding of latest observed value v(l )t and

v
(n)
t , according to Eq.(11);

10: Obtain the attention result vat according to Eq.(12);
11: Predict the variables x̃t according to Eq.(13);
12: Compute loss lt according to Eq.(14);
13: end for
14: Update parameters according to gradient of mean loss;
15: until convergence.

7.2 Statistics of DACMI and MIMIC-III Datasets
7.2.1 DACMI Dataset. The 13 variables’ minimums, interquartile
ranges, maximums and missing rates on the DACMI dataset are
shown in Table 4.

Table 4: Statistics of Variables in DACMI.

Min 25%-75% Max Missing Rate

PCL 62 100-108 151 1%
PK 1 3.70-4.40 13.2 1%

PLCO2 5 22-28 65 1%
PNA 96 135-142 179 1%
HCT 8.4 26.8-32.7 77.7 13%
HGB 0 8.90-11 20.8 15%
MCV 0 86-94 139 15%
PLT 5 130-330 2001 15%
WBC 0 7.1-14.1 325.7 15%
RDW 0 14.5-17.4 35.1 15%
PBUN 1 16-43 271 1%
PCRE 0 0.70-1.90 138 1%
PGLU 4 100-148 3565 3%

7.2.2 MIMIC-III Dataset. We extract the 2 demographics (i.e., age
and gender) and 27 sepsis-related variables (i.e., vital signs and lab
tests) of the 11,715 sepsis patients, including 41% female and 59%
male. The statistics of extracted demographics and variables are
listed in Table 5.
Table 5: Statistics of extracted variables and demographics
used to subtype sepsis patients.

Min 25%-75% Max Missing Rate

Gender - - - 0
Age 18 53-77 89 0

Heart Rate 0.35 75-98 285 21%
Respratory 0.17 16-24 69 21%
Temperature 15 36.5-37.6 42.2 28%

WBC 0.10 7.40-14.2 471.7 69%
Bands 0.80 2-11 79 99%

C-Reactive 0.10 15.7-122.8 299 99%

BUN 1 15-40 290 66%
MeanBP 0.20 67-88 299 26%
GCS 3 8-15 15 33%

Urineoutput 0 43-160 1200 33%
Creatinine (CRT) 0.05 0.70-1.80 138 80%
Platelet (PLT) 5 120-287 2292 82%

Glucose (GLC) 38.0 105-157 578 36%
Sodium (SDM) 74 136-142 184 65%

Hemoglobin (HMG) 1.60 9-11.20 21.6 69%
Chloride (CLR) 39 100-108 155 66%

Bicarbonate (BCB) 2 22-28 65 67%
Lactate (LCT) 0.05 1.2-2.9 36 89%

INR 0.10 1.20-1.70 48.8 80%
PTT 0.15 28.5-51.8 150 79%

Magnesium 0 1.80-2.20 43.5 69%
Aniongap (AG) 1 11-15 77 67%

Hematocrit (HMT) 2 26.8-32.9 67 64%
PT 7 13.3-17.8 150 80%

SysBP 0.06 105-136 340 22%
DiasBP 0.41 51-69 297 22%
SPO2 1 96-99 100 21%

7.3 SOFA Score Calculation
We use SOFA (Sepsis-related Organ Failure Assessment) score to
describe organ dysfunction in septic patients. Following [18], the
six organ SOFA scores are calculated as shown in Table 6. Each
organ’s SOFA score ranges from 0 (normal) to 4 (most abnormal).
The total SOFA score ranges from 0 (normal) to 24 (most abnormal).

7.4 K Value Selection for Weighted K-means
After data imputation and patient similarity computation, we adopt
weighted k-means to cluster patients into K groups. We conduct
experiments with different K and compute the mean P −value for
the variables. As is shown in Figure 6, K = 4 is the best option.
When K < 4, the average P −value becomes much higher (> 0.01).
When K > 4, there isn’t a large decline on average P −value .



Table 6: The definition of SOFA score and its components across six organ systems. Each SOFA component score ranges from
0 (normal) to 4 (most abnormal). The total SOFA score ranges from 0 (normal) to 24 (most abnormal).

SOFA score 1 2 3 4

Respiration
PaO2/FiO2, mmHg < 400 < 300 < 200 < 100

Coagulation
Platelets ×103 /mm3 < 150 < 100 < 50 < 20

Liver
Bilirubin, mg/dl 1.2 - 1.9 2.0 - 5.9 6.0 - 11.9 > 12.0
(µmol/l) (20 - 32) (33 - 101) (102 - 204) (> 204)

Cardiovascular
Hypotension MAP < 70 mmHg Dopamine ≤ 5 Dopamine > 5 Dopamine > 15

or dobutamine (any dose) or epinephrine ≤ 0.1 or epinephrine > 0.1
or norepinephrine ≤ 0.1 or norepinephrine > 0.1

Central nervous system (CNS)
Glasgow Coma Score (GCS) 13 - 14 10 - 12 6 - 9 <6

Renal
Creatinine, mg/dl 1.2 - 1.9 2.0 - 3.4 3.5-4.9 > 5.0
(µmol/l) or urine (110 - 170) (171 - 299) (300 - 440) (> 440)
output or < 500 ml/day or <200 ml/day

Figure 7: The severity heatmap of the variables across the
four subphenotypes. The subphenotypes are 1: Minimal Or-
gan Dysfunction; 2: Renal Dysfunction; 3: CNS & Respira-
tion Dysfunction; 4: Maximum Organ Dysfunction. Deeper
color means higher severity.

Figure 6: Mean P − value of variables across different K for
weighted k-means to cluster the sepsis patients. We select
K = 4 (which is the elbow point) for the sepsis subtyping
task.

7.5 Sepsis Subphenotype Visualization
After grouping the septic patients into 4 subphenotypes, we com-
pute the average value of variables across subphenotypes. The
average severity scores of different variables are shown in Figure 7.
Overall the Maximum Organ Dysfunction subphenotype has the
most severe states. The CNS & Respiration Dysfunction subpheno-
type is related to a severe GCS value, which is consistent with its
high CNS SOFA component in Table 3. Renal Dysfunction subphe-
notype has relatively worse Urineouput and Creatinine, which are
related to Renal system. The overall variable severity distribution
is identical to the SOFA component scores in Table 3.
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