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Recent Applications in Biomedicine

) Similarity Network Fusion and Identification of
Cancer Subtypes

* Joint Matrix Factorization and Drug
Repositioning

e Data Fusion by Simultaneous Matrix Tri-
~actorization and Drug-Induced Liver Injury
Prediction

* Tensor Factorization and Patient Phenotyping



Omics technologies in biomedicine

Tissue/Cell Lines

* Comparative genome hybridization

DNA copy-number assessment S
to DNA microarrays
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The Cancer Genome Atlas Pan-Cancer analysis project

12 tumor types
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The Cancer Genome Atlas Research Network, et al. The Cancer Genome Atlas Pan-Cancer

analysis project. Nature Genetics, 45:1113-1120, 2013.




Data integration from multiple heterogeneous sources

How to combine different measurements?

Issues:

e Large number of
measurements, small
sample sizes (p>>n)

* Need to integrate
common and
complementary
information

* Not all measurements
can be normalized and
mapped to the same
unit




Similarity network fusion

Step 1. Construct a Step 2. Integrate
similarity network for networks using
each data source data fusion method

Wang B, et al. Similarity network fusion for aggregating data types on a genomic scale. Nature
Methods, 11:333-337, 2014.




Construct similarity networks (1)
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Construct similarity networks (2)

mRNA expression
genes
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Combine networks (1)

Sample Similarity Networks

Pt(lll = s % Pt(z) X (S(l))T
:> 8 P, =@ x PV x (s

Q : Can also be extended to

more than 2 data types

O Patient

Patient similarity:
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Combine networks (2)

Sample Similarity Networks

Fused
Similarity
Network

Fusion

[Wip1—We||

O Patient

Patient similarity:

e MRNA-based

=== DNA Methylation-based === Supported by all data
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Case study: glioblastoma multiforme (GBM)

DNA methylation data FUSED
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Biological characterization of the subtypes
Subtype 2 S

PP—_—m
IDH1 0.0001
PTEN I p<0.001

Chr.07 gain P<0-°01
Chr.19 gain |I11 r I p<0.001
Chr.05 loss p<0.001
Chr.10 loss I 0 | p<0.001
Chr.21 loss | p<0.001
EGFR ampl. p<0.001
CDKN2A del. I| p<0.001
PTEN  del. £<0.001
RB1 ampl.
p<0.001
CDK6 ampl. Bl p<0.001
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From subtype-based to network-based outcome prediction

patient cohort new
patient

Current Analytics
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Comparisons on an METABRIC breast cancer data

/

n
Cox objective ~ Ip(2)= ). 9; X{z-log| exp(XJT-z)

i=1 \jER(ti)

Network-regularized objective Incorporate fused patient network structure

( )

n
Ip(z) = 251' X,-T 7z —log 2 exp(X]Tz)
i=1 | JeR(t;)

CNV and expression data
Discovery: 997 patients, Validation: 995 patients

PAM50 iCluster SNF SNF
(5 clusters) (10 clusters) §} (5 clusters) (10 clusters) | Network
P value discovery cohort 3.0 x 1079 1.2x10"14 | 6.10x10"11 3,31 x 1012 =
P value validation cohort 1.7 x 1079 2.9x10"11 | 512x10"13  7.86 x 10712 =
CI discovery cohort 0.560 0.621 0.638 0.638 0.720
CI validation cohort 0.551 0.605 0.633 0.633 0.706




Summary of patient networks framework

* Creates a unified view of patients based on
multiple heterogeneous sources

* |Integrates gene and non-gene based data
* Robust to different types of noise

* Obtain superior results on regular tasks such
as subtyping and outcome prediction

* Scalable

Wang B, et al. Similarity network fusion for aggregating data types on a genomic scale. Nature

Methods, 11:333-337, 2014.



Recent Applications in Biomedicine

* Similarity Network Fusion and ldentification of
Cancer Subtypes

=) |oint Matrix Factorization and Drug
Repositioning

e Data Fusion by Simultaneous Matrix Tri-
~actorization and Drug-Induced Liver Injury
Prediction

* Tensor Factorization and Patient Phenotyping



The Challenge of Drug Discovery
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approved

Test compounds by health
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High cost, long time, and low success rate

Reichert JM. Trends in development and approval times for new therapeutics in the US. Nature

Reviews Drugqg discovery. 2003:2(9):695-702.



Drug repositioning

Drug repositioning (also known as Drug repurposing, Drug re-
profiling, Therapeutic Switching and Drug re-tasking) is the

application of known drugs and compounds to new indications
(i.e., new diseases).

Original indication New indication
Viagra Hypertension Erectile dysfunction
Wellbutrin Depression Smoking cessation
Thalidomide Antiemetic Multiple Myeloma

" The repositioned drug has already passed a significant number of
toxicity and other tests, its safety is known and the risk of failure
for reasons of adverse toxicology are reduced.



Shorter timelines & less risk

De novo drug discovery and development
e 10-17 year process
¢ <10% overall probability of success

Target discovery

Discovery & screening

ADMET

Development

Lead optimization

Registration

Discove

e Expression analysis| e Tradiﬁ(?r,-,a] e Traditional e Bioavailability and a ical e United States

* /n vifro function e Combinatorial medicinal systemic exposure testing at Phase | (FDA)

* |n vivo validation; chemistry chemistry (absorption, (Phase I/1l for e Furope (EMEA
for example, e Structure-based e Rational clearance and cancer) or country-by- Market
knockouts drug design drug design distribution) country)

e Bioinformatics Screening e Japan (MHLW)

e |n vitro ¢ Rest of world
e £x vivo and in vivo
e High throughput
2-3 years 0.5-1 years 1-3 years 1-2 years 56 years 1-2 years
Drug repositioning
e 3-12 year process
¢ Reduced safety and pharmacokinetic uncertainty
b
Compound Compound
identification acquisition Development Registration
e Targeted * Licensing * United States
searches e Novel IP (FDA)
¢ Novel insights ® Both licensing Phase | or e Europe (EMEA
¢ Specialized and novel IP Phase |l stages or country-by- Market
screening e Internal sources e Ability to country)
platforms leverage existing e Japan (MHLW)
e Serendipity data packages * Rest of World
1-2 years 0-2 years 1-6 years 1-2 years

Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs.

Nature reviews Drug

discovery, 3(8):673-683, 2004.




Drug Resources and Disease Resources
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Joint Matrix Factorization (JMF)
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Zhang, P, Wang, F., Hu, J. Towards Drug Repositioning: A Unified Computational Framework for
Integrating Multiple Aspects of Drug Similarity and Disease Similarity. AMIA, 2014,




Algorithm Flowchart of JMF

drug chemical structure

similarity network

drug target protein

similarity network

drug side effect
similarity network

on

known drug-
disease

associations

disease phenotype
similarit

Y i
disease ontology
similarity

disease gene
similarity

A unified computational framework for drug
repositioning hypothesis generation

Outputs:
1. predicted additional drug-disease associations
2. interpretable importance of different information sources
3. latent drug and disease groups as by-products




JMF as an optimization problem

D; nxn The k-th drug similarity matrix
Notations and sym bols of the S mxm The /-th disease similarity matrix
meth odology U nxCp Drug cluster assignment matrix
V mxCg Disease cluster assignment matrix
A CpxCg Drug-disease cluster relationship matrix
R nxm Observed drug-disease association matrix
(O] nxm Densified estimation of R
® Kgx1 Drug similarity weight vector
T K. x1 Disease similarity weight vector

= We aim to analyze the drug-disease network by minimizing the following objective:
J=J,+AJ,+2A,J,
= The reconstruction loss of observed drug-disease associations:

J,=Il®@-UAV"II; Similar Drugs/diseases (latent groups) have similar behaviors

—

* The reconstruction loss of drug similarities:

51=Y" 0 D, -UU" I2+8 o
1 Zat Vi greityy el Reconstruct integrated

- - . . - - >_ .
® The reconstruction loss of disease similarities: drug/disease networks

K, 10D 2
=Y, m IS, —VV I +68, Il

Pl

= Putting everything together, we obtained the optimization problem to be resolved:

MiNy y a o0, SUbject to U20, V20, A20, w20, w'1=1, 20, n'1=1, P,(0)= P,(R)



BCD approach for solving the problem

* Block Coordinate Descent (BCD) strategy: The BCD approach works by solving
the different groups of variables alternatively until convergence. At each
iteration, it solves the optimization problem with respect to one group of
variables with all other groups of variables fixed.

Algorithm 1: A BCD Approach for Solving Problem (11)

Require: A1>0, A2>0, >0, 520, Ka>0, k>0, {D_}4, {S,}=.R

1

2

- Initialize w=(1/K3)1 ERX ™, m=(1/K;)1 € R%*!

: Initialize U and ¥ by performing Symmetric Nonnegative Matrix Factorization on D = 2:1 D, and

S = 2; S

3

eo®m R B B o

: while Not Converge do
Solve O as described in section 2 (as a constrained Euclidean projection)
Closed-form
Solve o and & as described in section 3 (as a standard Euclidean projection onto a simplex) solution

Solve A as described in section 4 (as a nonnegative quadratic optimization problem)

Solved by Projected
Gradient Descent
Solve V as described in section 6 (as a nonnegative quadratic optimization problem) (PGD) method

: end while

Solve U as described in section 5 (as a nonnegative quadratic optimization problem)

Computational complexity is O(Rrmn) , where R is the number of BCD iterations, and r is the
aveZ?age PGD iterations when updating A, U, and V.



Data Description

Benchmark dataset was extracted from NDF-RT, spanning 3,250 treatment
associations between 799 drugs and 719 diseases

Three 799x799 matrices were used to represent drug similarities between 799
drugs from different perspectives

Three 719x719 matrices were used to represent disease similarities between
719 human diseases from different perspectives
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ROC comparisons of five drug
repositioning approaches
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Distribution of weights of the similarity weight
vectors obtained by JMF

(a) Drug similarity weight vector

chemical structure
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Top 10 drugs for diseases Alzheimer's Disease (AD)
and Systemic Lupus Erythematosus (SLE)

(a) Top 10 drugs predicted for AD

(b) Top 10 drugs predicted for SLE

Drug Prediction Score  Clinical Evidence? Drug Prediction Score  Clinical Evidence?
Selegiline* 0.7091 — Desoximetasone 0.7409 No
Carbidapa 0.6924 No Azathioprine* 0.7269 —
Amantadine 0.6897 No Leflunomide 0.7078 Yes
Procyclidine 0.6826 No o Fluorometholone 0.7054 No
Valproic Acid*  0.6745 5:&;32,{06 r;I N9 Triamcinolone* 0.6862 —
Metformin 0.6543 Yes Beclomethasone 0.6522 No
Bexarotene 0.6426 Yes Etodolac 0.6445 No
Neostigmine 0.6385 No Hydroxychloroquine*  0.6374 —
Galantamine* 0.6348 — Nelfinavir 0.6371 Yes
Nilvadipine 0.6159 Yes Mercaptopurine 0.6150 No

29

* denotes the drug is known and approved to treat the disease



Summary of joint matrix factorization framework

 We proposed a general computational framework, to
explore drug-disease associations from multiple
drug/disease sources

 Our method could help generate drug repositioning

hypotheses, which will benefit patients by offering
more effective and safer treatments

 The computational framework and its solution can
be used in other applications (gene-disease, drug-
patient, etc.)

Zhang, P, Wang, F., Hu, J. Towards Drug Repositioning: A Unified Computational Framework for

Integrating Multiple Aspects of Drug Similarity and Disease Similarity. AMIA, 2014,



Next: Multi-channel detailed computational hypothesis generation
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And even beyond the hypothesis generation...

Home » Pharmacology » Diabetes and Obesity » Obese Mice

ob/ob Diabetes Model - 16 Mice $9,000.00 uspD

per service
Service Description 9 week

Provider: is 3 US company with laboratories in Hangzhou, China. The laboratory has been turn around time
offering exploratory (non-GLP) pharmacology services to US and Chinese biopharma since 2004.

Provided By

Background: The obese mutant mouse model was first reported by Ingalls A et af from the Jackson Laboratory
in 1951 (Obese, a New Mutation in the House Mouse [164 KB]). The obese mouse resulted from a spontaneous
mutation in a gene that was named ob in the V stock. Mice homozygous for the obese spontaneous mutation,
(Lep~ob~; commonly referred to as ob or ob/ob), are first recognizable at about 4 weeks of age. Homozygous
mutant mice gain weight rapidly and may reach three times the weight of wild-type controls. In addition to
obesity, mutant mice exhibit hyperphagia, a diabetes-like syndrome of hyperglycemia, glucose intolerance,
elevated plasma insulin, subfertility, impaired wound healing, and an increase in hormone production from both
pituitary and adrenal glands. Friedman J et al reported leptin in 1994, and demonstrated that leptin, the product
of the ob gene, was produced in white adipose tissue and served as the peripheral signal to the central nervous
system of nutritional status.

Service Details: This service offers a 28 day db/db mouse model of T2DM and obesity. Customer has various
options that are conveved to Links Biosciences usina a Service Order Form. Customer assians up to 16 mice to

Be Brilliant” Ask An Expert

Use our free service locator program to find
the research services you need.

Enter our online marketplace below to find, compare
and purchase research services from hundreds of

contract research organizations (CROs). Get free access to detailed 'information on
thousands of research services.

Register In Seconds

: Purchase services with confidence that you I I
$2000 in four weeks, | would not have asked a postdoc to are getting the lowest possible price. WI” have a hlgher
spend a year setting it up in our lab."

/. \ Holger Wesche, Principal Scientist, Large Pharma click for more informatio o impaCt in biomediCine
© 32

Best Price Guarantee Big data researchers
‘Q = "Had | known that | can get chick embryo assays done for
. .“

Validation methods are increasingly commoditized



Recent Applications in Biomedicine

* Similarity Network Fusion and ldentification of
Cancer Subtypes

* Joint Matrix Factorization and Drug
Repositioning

m=) Data Fusion by Simultaneous Matrix Tri-
~actorization and Drug-Induced Liver Injury
Prediction

* Tensor Factorization and Patient Phenotyping



Matrix Tri-Factorization

)
it i
Backbone B

Tri-factorization Recipe matrix of
of matrix A-B matrix of A A-B

- B

Reconstructed
matrix A-B

Recipe
matrix of B

3

Ding C, Li T, Park H. Orthogonal Nonnegative Matrix Tri-factorizations for Clustering. KDD, 2006.

Wang F, Li T, Zhang C. Semi-supervised clustering via matrix factorization. SDM, 2008.



Simultaneous Matrix Tri-Factorization
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Data Fusion by Simultaneous Matrix Tri-Factorization
Input to data fusion Simultaneous Constrained Decomposition

&

g

& bt

&

JLegit Rl
| I

R

|
&s

Repeat until convergence:
 Fix G, update S
 Fix S, update G

Zitnik M, Zupan B. Data Fusion by Matrix Factorization. PAMI 2015.



Liver and Drug-Induced Liver Injury (DILI)
Alcohol
\

Envirqnmental/
Chemicals

P Foods, Nutrients, etc.

NOC 50580-404-08 See New wamng
Extra Strength

IYLENOL

F ADU
COLD + SORE THROAT
Acetaminophen®
Pain Rellever-Fever Reducer
8 fl 0z (240 ml)

" cooL f

ot « “Approved drugs are the most
. common cause of acute liver failure in

l;eamhzmh{oteievesminormsand the USA” _ FDA
:tfs;em?n cold m headache .
ok vl i * DILIis the MOST frequent reason for
e e ioiansid drug withdrawal during drug discovery,
- clinical trials, and after drugs are
" auarecoten approved for the marketplace
| 3 or more alcoholic drinks every day 37
while using this product
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CAMDA 2012 Task: DILI Prediction

CAMDA: Critical Assessment of Massive Data Analysis

The Japanese Toxicogenomics Project (TGP) creates a gene expression database
using the Affymetrix GeneChip arrays to measure the effects of 131 chemicals,

mainly medical drugs, on the liver.
DILI potential has been categorized as severe, moderate, or mild.

Rat Gene

Sample Metadata

Dose Level

— Dose

Sacrifice Period
Animal Age

Sex Type
—_—— Test Type

Species

3|buIS OAIA U]

Multi-classifier system

= Human Gene FSS Hur¥1an in ) Rflt
Stacking with LR Vitro In Vitro
PCA RF, GBT, LR, SVM 0.741 0.765
CUR RF, GBT, LR, SVM 0.758 0.755




Data Fusion of Additional Sources

Drug information
from DrugBank

Chemical Structure ASPIRIN

R .

Drug Interactions

The metabolism of Tacrine, a CYP1A2 substrate, may be reduced by strong CYP1A2 inhibitors such as
Ketoconazole. Consider modifying therapy to avoid Tacrine toxicity. Monitor the efficacy and toxicity
of Tacrine if Ketoconazole is initiated, discontinued or if the dose is changed.

Histological and
clinical chemistry data
(Rat, in vivo)

Hematology

RBC, Neutrophil, Eosinophil,
Basophil, Monocyte, Lymphocyte

Liver Weight
Terminal body weight
Liver weight,

Relative liver weight

Blood Chemistry

ALP,Cl, TC, Ca, TG, IP, PL, TP, TBIL, RALB, DBIL,
A/G GLC, AST (GOT), BUN, ALT (GPT), CRE, LD

Drug Targets
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Matrix Factorization-Based DILI Prediction

12

9

Sample

Hematology,

biochemistry,
liver weight

metadata

Data fusion studies @ AUC

In vivo studies 0.819
In vitro studies 0.790
Human in vitro study 0.793
Animal in vitro study 0.799

Sample from
rat in vivo

Sample from
rat in

5 8

vitro study

Sample from
rat in vivo
single dose
study

Animal studies 0.811
Human studies 0.792

Sample from
human in
vitro study

All studies 0.810

Gene from
rat in vivo
single dose
study

Gene from
human in
vitro study

e.s Given the aim to predict DILI

potential in humans:

* Animal studies may be
replaced with in vitro
assays (AUC = 0.799)

« Liverinjury in humans can
be predicted from animal
data (AUC = 0.811)

« animal in vivo > animal in
vitro = human in vitro

Gene from
rat in vivo

Gene from
rat in vitro
study

Zitnik M, Zupan B. Matrix factorization-based data fusion for drug-induced liver injury prediction. Systems Biomedicine

2014. (First prize winner at CAMDA 2013 Conference)




Recent Applications in Biomedicine

* Similarity Network Fusion and ldentification of
Cancer Subtypes

* Joint Matrix Factorization and Drug
Repositioning

e Data Fusion by Simultaneous Matrix Tri-
~actorization and Drug-Induced Liver Injury
Prediction

mm) Tensor Factorization and Patient Phenotyping



Phenotyping from Electronic Medical Records (EMR)

Phenotype (American Heritage Dictionary)
« The observable physical or biochemical characteristics of an organism, as
determined by both genetic makeup and environmental influences.

Why phenotyping from EMR

« Mapping noisy, incomplete, and potentially inaccurate patient
representation from EMR to meaningful medical concepts Feature engineering
« Extracting clinical meaningful groups of patients from EMR Cohort generation

Heart Failure Phenotype

Diabetes Phenotype Other forms of heart disease
Complications of surgical and medical care
Symptoms

Diseases of other endocrine glands
Complications of surgical and medical care

) Cardiovascular Procedures
Chemistry Pathology.and Laboratory Tests Hematology and Coagulation Procedures
Organ or Disease Oriented Panels Evaluation and Management of Other Outpatient Services

Hematology and Coagulation Procedures Surgical Procedures on the Cardiovascular System
Surgical Procedures on the Cardiovascular System Chemistry Pathology and Laboratory Tests

Ho J, Ghosh J, Sun J. Marble: High-throughput Phenotyping from Electronic Health Records via

Sparse Nonnegative Tensor Factorization. KDD 2014.



Tensor representation for EMR
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CP factorization for EMR
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Ho J et al. Marble: High-throughput phenotyping from Electronic Health Records via sparse nonnegative tensor

factorization. KDD 2014.
Wang Y et al. Rubik: Knowled uided tensor factorization and completion for health data analytics. KDD 2015.




A possible application of EHR-phenotyping
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Ho J, Ghosh J, Sun J. Marble: High-throughput Phenotyping from Electronic Health Records via

Sparse Nonnegative Tensor Factorization. KDD 2014.



Tucker factorization for pathology reports
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Luo Y et al. Subgraph augmented non-negative tensor factorization (SANTF) for modeling clinical narrative

text. JAMIA 22:1009-1019, 2015.



Comparison of tensor modeling and factorization schemes
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Challenges and opportunities: multiscale networks

Genome

Transcriptome

Proteome

Metabolome
Microbiome

Epigenome

Exposome

Social graph
Biosensors
Imaging

Topol E. Individualized Medicine from Prewomb to Tomb. Cell 157, 2014.



Dynamic network: timeline of individualized
genomic medicine
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During an individual’s lifespan: from prewomb to tomb
Boland MR et al. Birth Month Affects Lifetime Disease Risk: A Phenome-Wide Method. JAMIA 2015.

Topol E. Individualized Medicine from Prewomb to Tomb. Cell 157, 2014.



Personalized multiscale networks to model
dynamics of complex disease

’W

DNA
Cell-specific RNA
Cytokines
Clinical labs
Mobile devices
Microbiome
Physiometrics

0:05 min
0:

10 mip,

Dudley J. Big data in biology and medicine. Retrieved at www.aaas.org



Healthcare is really a big data industry

60%

Exogenous
Factors

30%

Genomics Factors

10%

Clinical Factors

1,100 Terabytes

Generated per lifetime

6 Terabytes

Per lifetime

0.4 Terabytes

Per lifetime

Help people live longer and feel better



Our commitment to Health — IBM Moonshot

“I'm telling you, our moonshot will be the impact we will have on

Healthcare. It has already started. We will change and do our part
to change the face of Healthcare. | am absolutely positive about it.
And that, to me, while we do many other things, that will be one of

the most important.”

IBM
Life Sciences
Solutions

IBM
Watson Health

Key
Acquisitions

Ginni Rometty
IBM Chairman, President and CEO

April 16, 2015
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Center for Computational Health @ IBM

Solutions

&
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(Retail) Point of Care Care and Wellness
Decision Support Mgmt. & Coordination
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ol | Patient Predictive Disease Care Pathway
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et - (VN 4> Visual Computational Translational
Physical Analytics Health Behavior Medicine
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Data from Health Ecosystem ) @
% Knowledge Sources

Multiple Positions Available:

Interns

Postdocs

Research Engineers
Research Staff Members

Contact:

pzhang@us.ibm.com .



Thank you!!!
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“When you have a hammer, everything looks like a nail”



