Healthcare Data Mining with Matrix Models

KDD 2016 Tutorial Part II August 13th, 2016

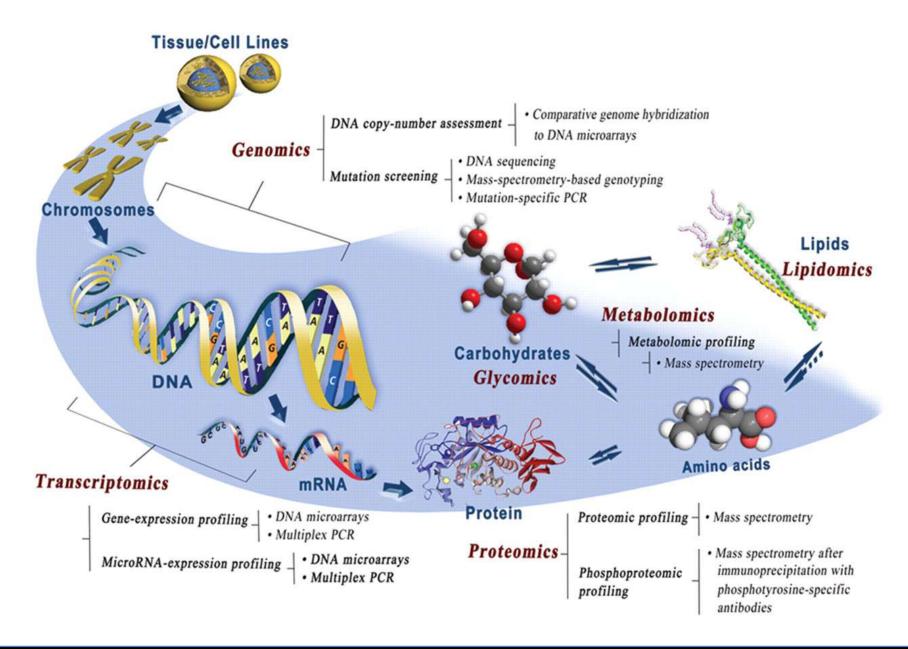
Ping Zhang
Center for Computational Health
IBM T.J. Watson Research Center

pzhang@us.ibm.com

Recent Applications in Biomedicine

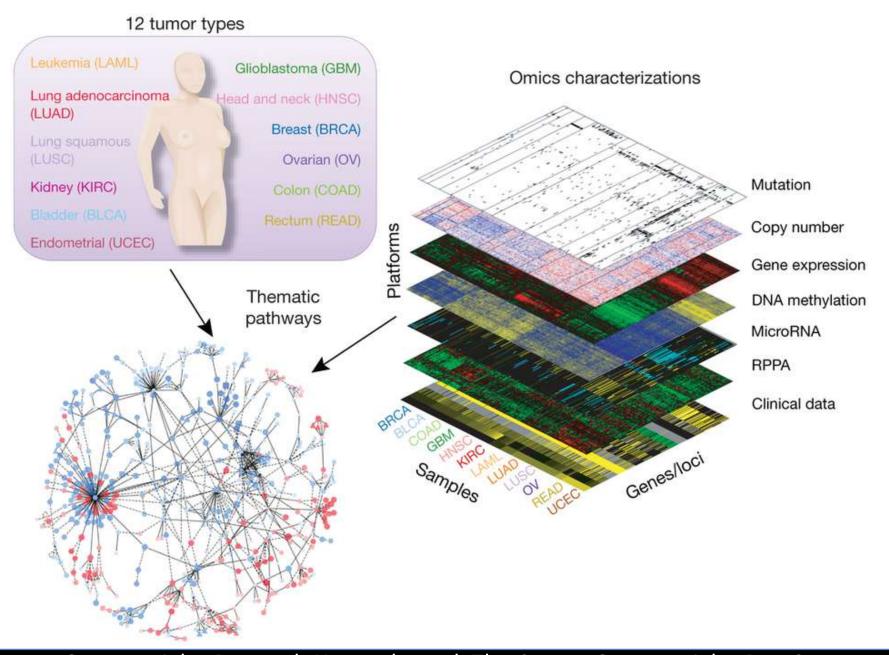
- Similarity Network Fusion and Identification of Cancer Subtypes
- Joint Matrix Factorization and Drug Repositioning
- Data Fusion by Simultaneous Matrix Tri-Factorization and Drug-Induced Liver Injury Prediction
- Tensor Factorization and Patient Phenotyping

Omics technologies in biomedicine



R. Wu, et al. Novel Molecular Events in Oral Carcinogenesis via Integrative Approaches. *JDR*, 90(5):561-572, 2010.

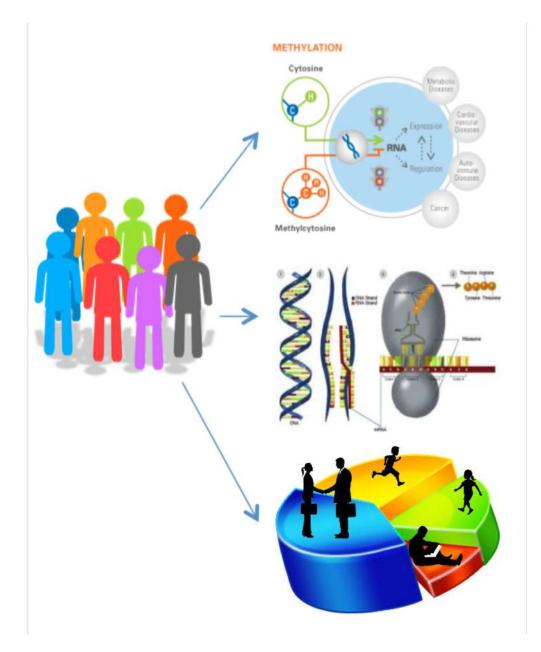
The Cancer Genome Atlas Pan-Cancer analysis project



The Cancer Genome Atlas Research Network, et al. The Cancer Genome Atlas Pan-Cancer analysis project. *Nature Genetics*, 45:1113-1120, 2013.

Data integration from multiple heterogeneous sources

How to combine different measurements?



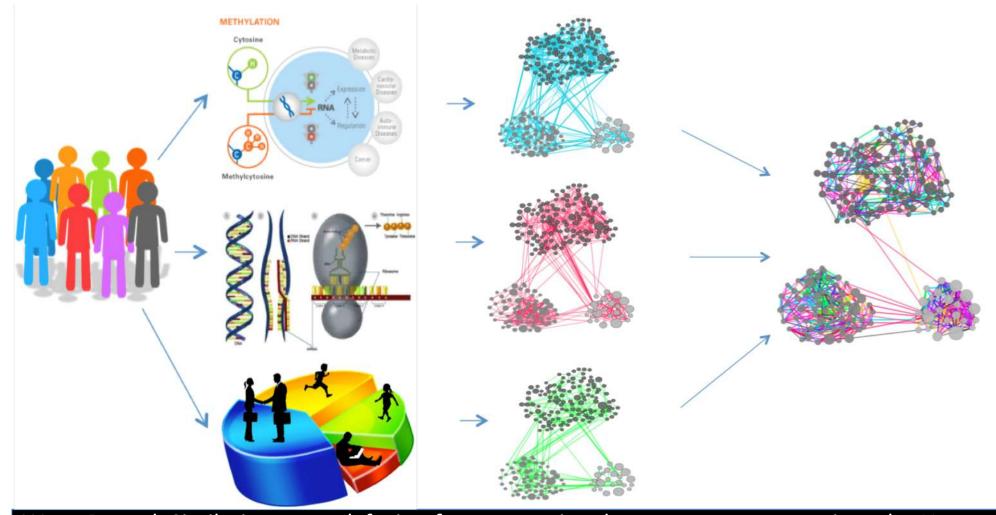
Issues:

- Large number of measurements, small sample sizes (p>>n)
- Need to integrate common and complementary information
- Not all measurements can be normalized and mapped to the same unit

Similarity network fusion

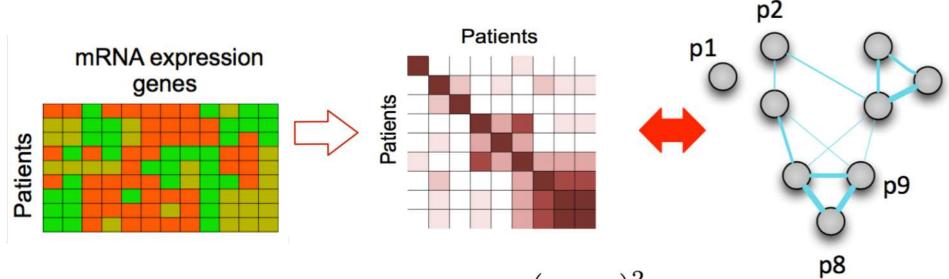
Step 1. Construct a similarity network for each data source

Step 2. Integrate networks using data fusion method



Wang B, et al. Similarity network fusion for aggregating data types on a genomic scale. *Nature Methods*, 11:333-337, 2014.

Construct similarity networks (1)



Patient similarity:

$$W(i,j) = exp(\frac{\rho(x_i, x_j)^2}{\eta \xi_{ij}^2})$$

Adjacency matrix:

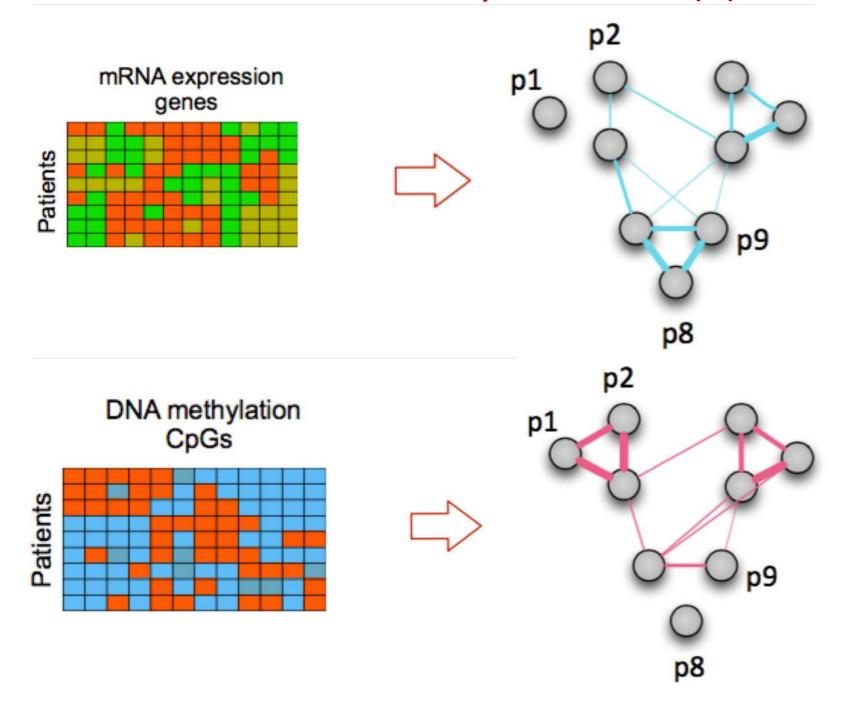
$$P(i,j) = \frac{W(i,j)}{\sum_{k \in V} W(i,k)}$$

Sparsification

1)
$$\mathcal{W}(i,j) = \begin{cases} W(i,j) & \text{if } x_j \in KNN(x_i) \\ 0 & \text{otherwise} \end{cases}$$

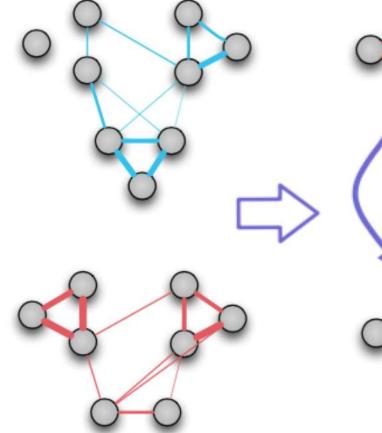
S(i, j) =
$$\frac{\mathcal{W}(i, j)}{\sum_{x_k \in KNN(x_i)} \mathcal{W}(i, k)}$$

Construct similarity networks (2)

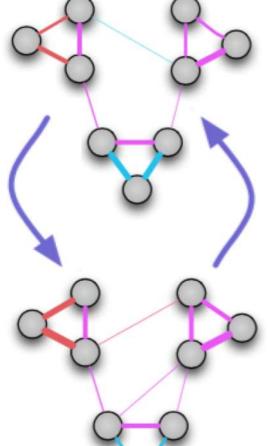


Combine networks (1)

Sample Similarity Networks



Fusion

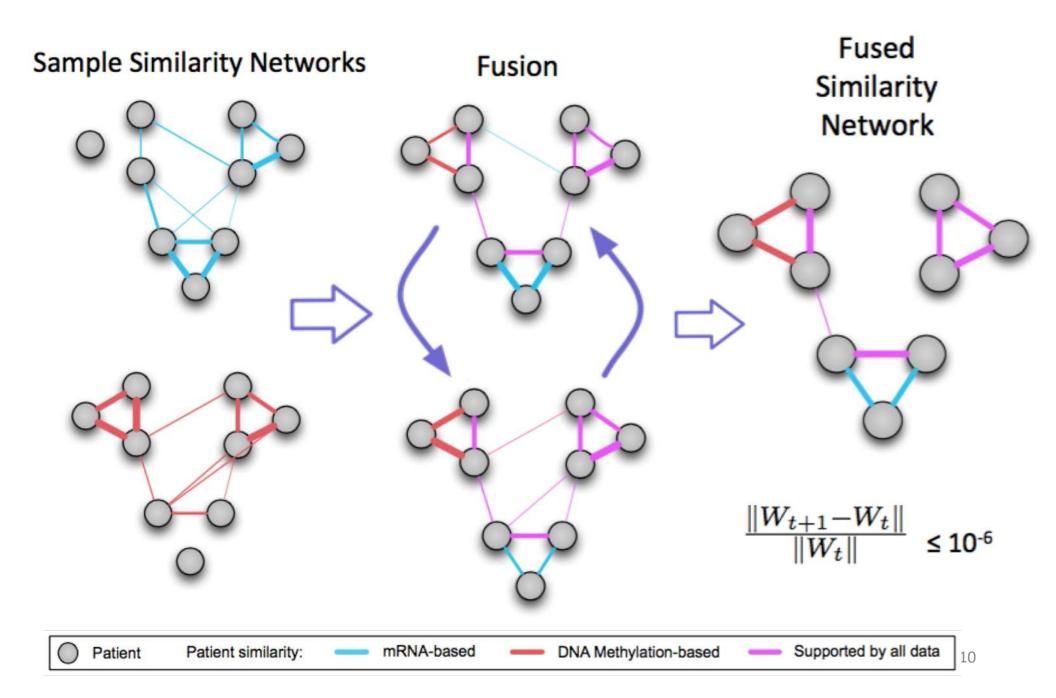


$$\mathbf{P}_{t+1}^{(1)} = \mathbf{S}^{(1)} \times \mathbf{P}_{t}^{(2)} \times (\mathbf{S}^{(1)})^{T}$$

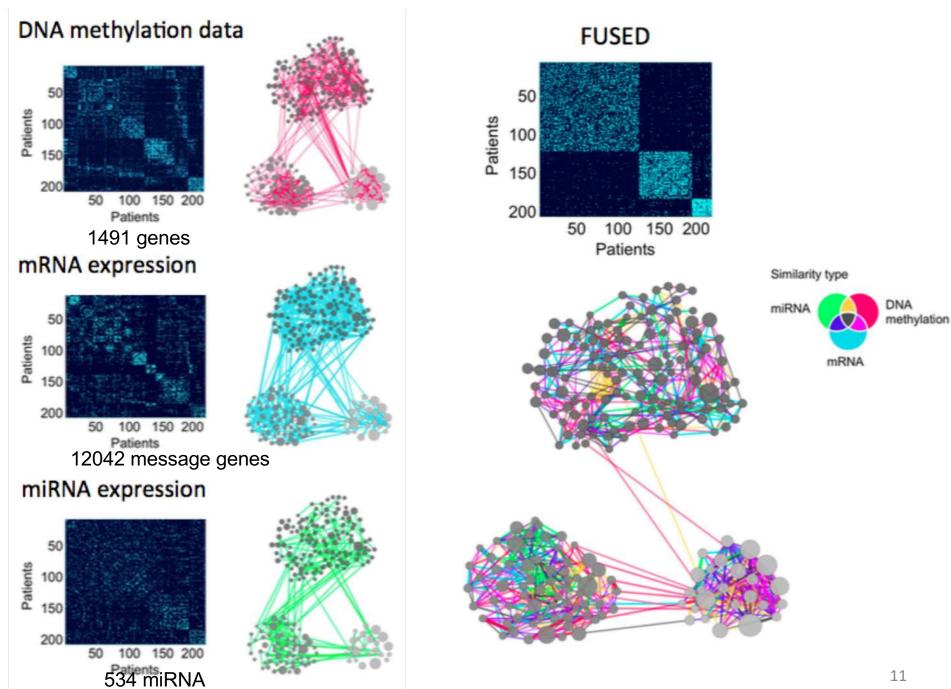
$$\mathbf{P}_{t+1}^{(2)} = \mathbf{S}^{(2)} \times \mathbf{P}_{t}^{(1)} \times (\mathbf{S}^{(2)})^{T}$$

Can also be extended to more than 2 data types

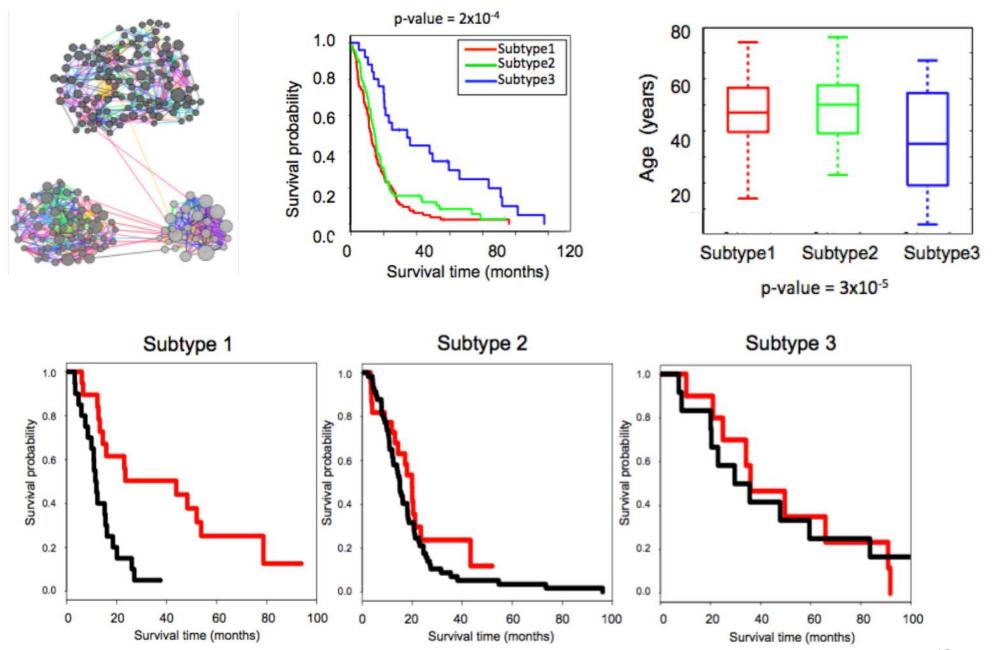
Combine networks (2)



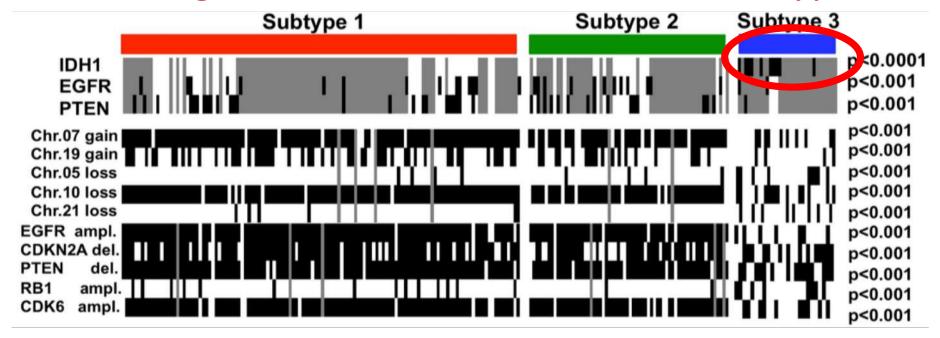
Case study: glioblastoma multiforme (GBM)

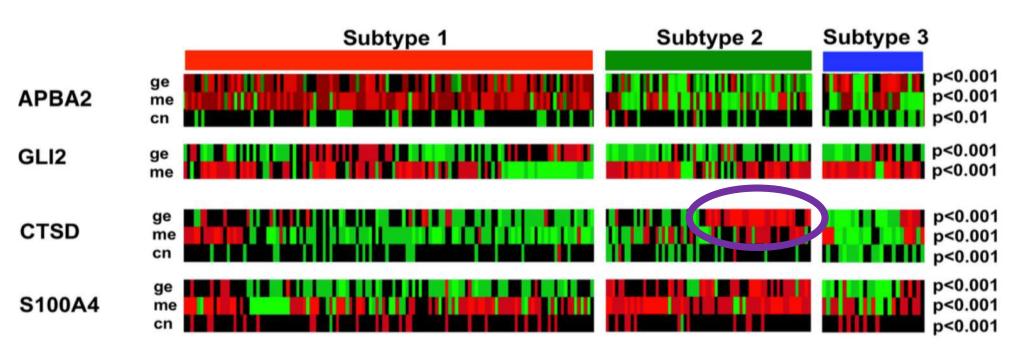


Clinical properties of the subtypes

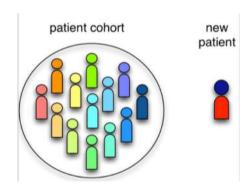


Biological characterization of the subtypes

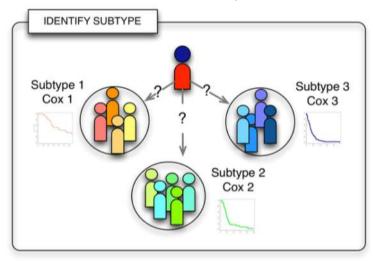


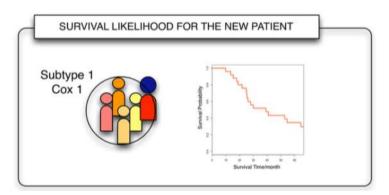


From subtype-based to network-based outcome prediction

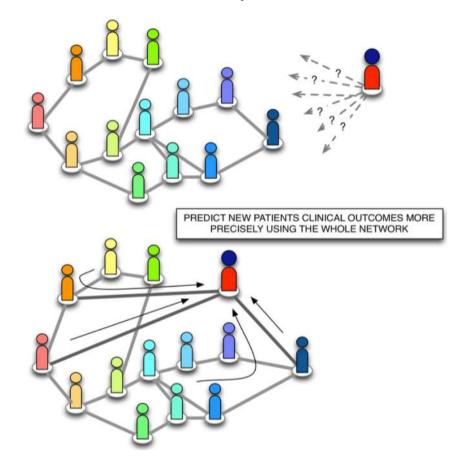


Current Analytics





Future Analytics



Comparisons on an METABRIC breast cancer data

Cox objective
$$lp(z) = \sum_{i=1}^{n} \delta_{i} \left(\mathbf{X}_{i}^{T} z - \log \left(\sum_{j \in R(t_{i})} \exp(\mathbf{X}_{j}^{T} z) \right) \right)$$

Network-regularized objective Incorporate fused patient network structure

$$lp(z) = \sum_{i=1}^{n} \delta_{i} \left(X_{i}^{T} z - \log \left(\sum_{j \in R(t_{i})} \exp(X_{j}^{T} z) \right) \right) - \lambda \sum_{i} \sum_{j} (X_{i}^{T} z - X_{j}^{T} z)^{2} w_{ij}$$

CNV and expression data

Discovery: 997 patients, Validation: 995 patients

	PAM50 (5 clusters)	iCluster (10 clusters)	SNF (5 clusters)	SNF (10 clusters)	Network
P value discovery cohort	3.0×10^{-9}	1.2×10^{-14}	6.10×10^{-11}	3.31×10^{-12}	-
P value validation cohort	1.7×10^{-9}	2.9×10^{-11}	5.12×10^{-13}	7.86×10^{-12}	-
CI discovery cohort	0.560	0.621	0.638	0.638	0.720
CI validation cohort	0.551	0.605	0.633	0.633	0.706
					15

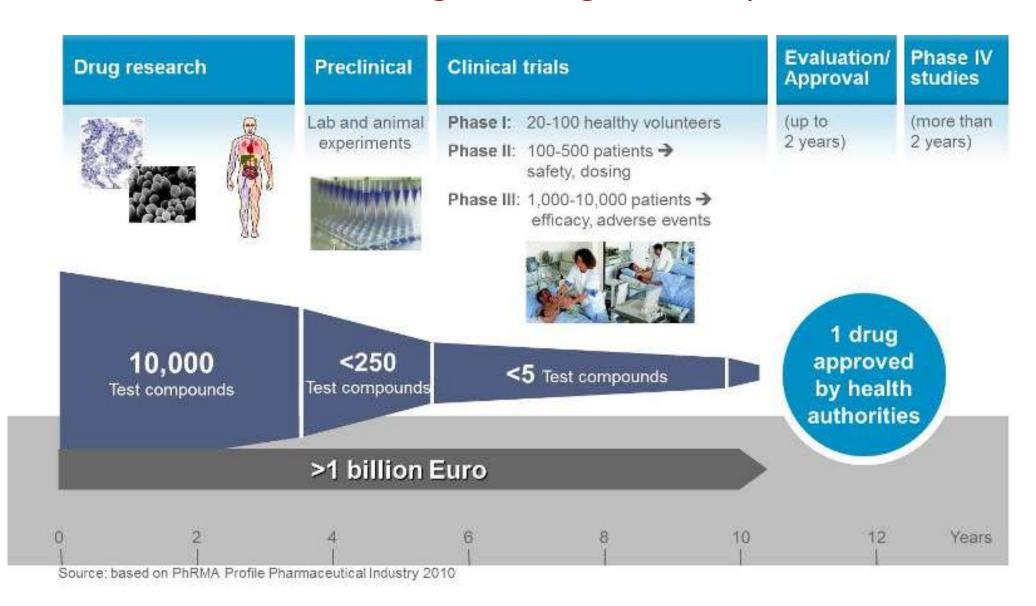
Summary of patient networks framework

- Creates a unified view of patients based on multiple heterogeneous sources
- Integrates gene and non-gene based data
- Robust to different types of noise
- Obtain superior results on regular tasks such as subtyping and outcome prediction
- Scalable

Recent Applications in Biomedicine

- Similarity Network Fusion and Identification of Cancer Subtypes
- Joint Matrix Factorization and Drug Repositioning
 - Data Fusion by Simultaneous Matrix Tri-Factorization and Drug-Induced Liver Injury Prediction
 - Tensor Factorization and Patient Phenotyping

The Challenge of Drug Discovery



High cost, long time, and low success rate

Reichert JM. Trends in development and approval times for new therapeutics in the US. *Nature Reviews Drug discovery*. 2003;2(9):695-702.

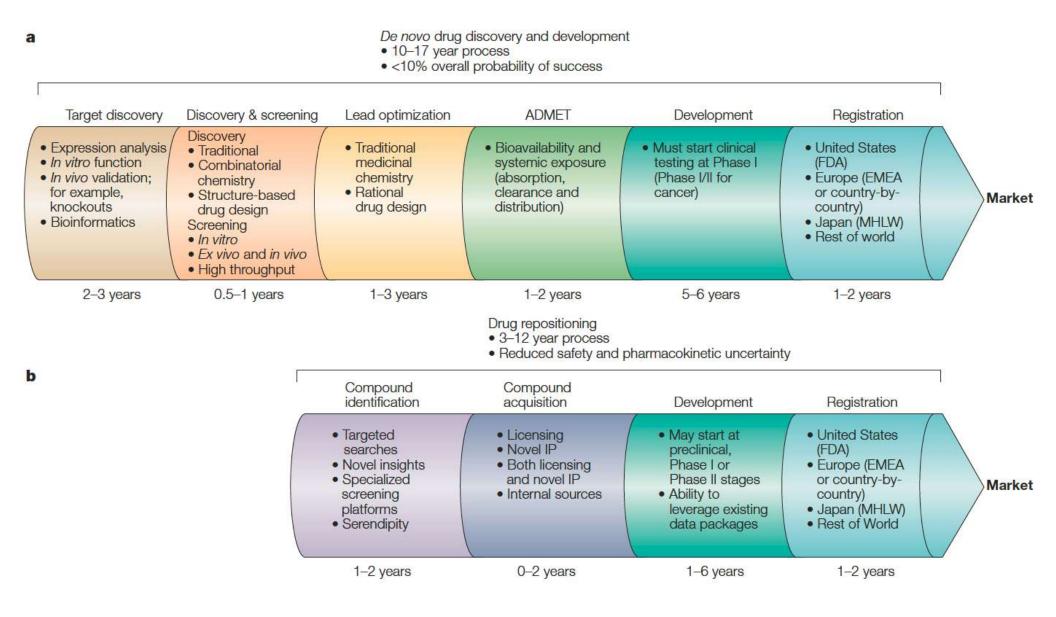
Drug repositioning

• Drug repositioning (also known as Drug repurposing, Drug reprofiling, Therapeutic Switching and Drug re-tasking) is the application of known drugs and compounds to new indications (i.e., new diseases).

Drug	Original indication	New indication		
Viagra	Hypertension	Erectile dysfunction		
Wellbutrin	Depression	Smoking cessation		
Thalidomide	Antiemetic	Multiple Myeloma		

■ The repositioned drug has already passed a significant number of toxicity and other tests, its safety is known and the risk of failure for reasons of adverse toxicology are reduced.

Shorter timelines & less risk



Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. *Nature reviews Drug discovery*, 3(8):673-683, 2004.

Drug Resources and Disease Resources

H,C,O,CH,

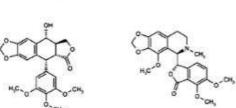
H,C,O,CH,

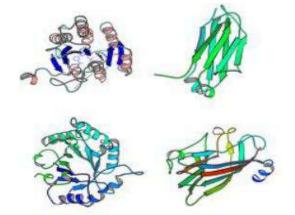
H,C,O,CH,

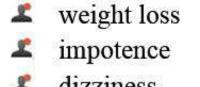
H,C,O,CH,

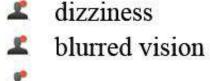
H,C,O,CH,

O-CH,









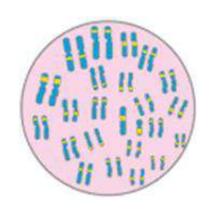
Chemical Structure

Target Proteins

Side-effect Keywords

Calculate drug/disease similarities

Drug

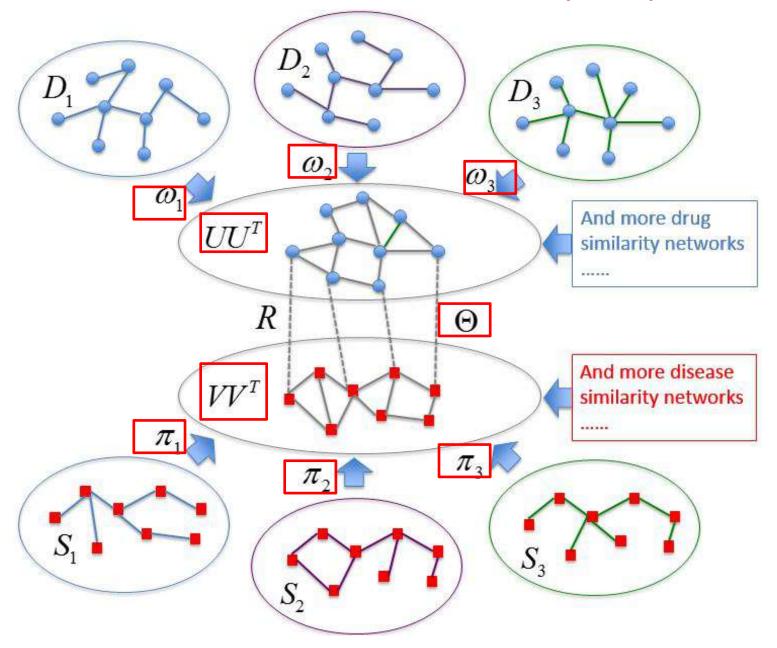


Phenotype/Symptom

Ontology

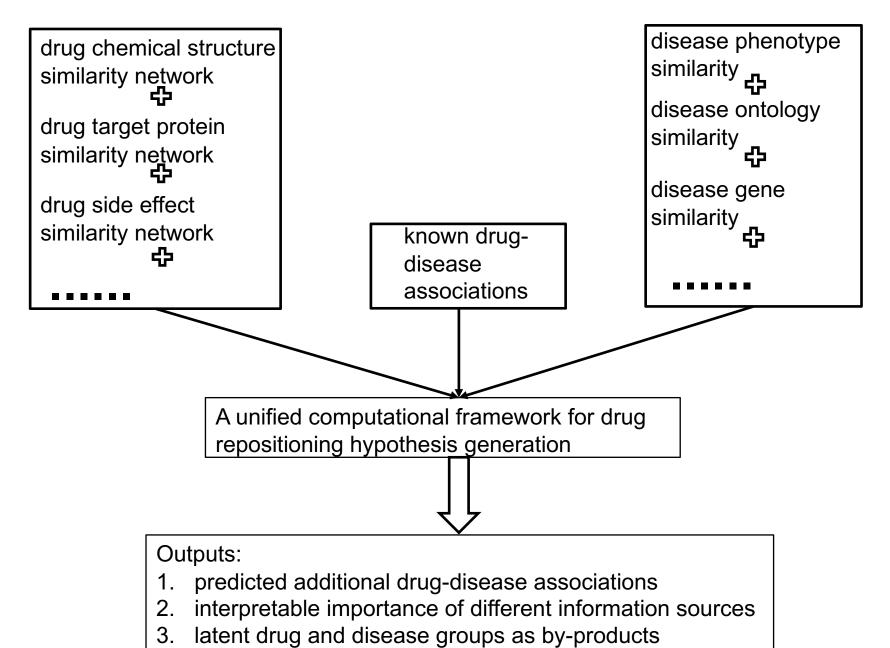
Disease Gene

Joint Matrix Factorization (JMF)



Zhang, P., Wang, F., Hu, J. Towards Drug Repositioning: A Unified Computational Framework for Integrating Multiple Aspects of Drug Similarity and Disease Similarity. *AMIA*, 2014.

Algorithm Flowchart of JMF



JMF as an optimization problem

Notations and symbols of the
methodology

D_k	$\mathbf{n} \times \mathbf{n}$	The k -th drug similarity matrix
S_l	$\mathbf{m} \mathbf{\times} \mathbf{m}$	The <i>l</i> -th disease similarity matrix
$oldsymbol{U}$	$n \times C_D$	Drug cluster assignment matrix
V	$m \times C_s$	Disease cluster assignment matrix
Λ	$C_D \times C_S$	Drug-disease cluster relationship matrix
\boldsymbol{R}	$\mathbf{n} \mathbf{\times} \mathbf{m}$	Observed drug-disease association matrix
Θ	$\mathbf{n} \mathbf{\times} \mathbf{m}$	Densified estimation of R
ω	$K_d \times 1$	Drug similarity weight vector
π	$K_s \times 1$	Disease similarity weight vector

We aim to analyze the drug-disease network by minimizing the following objective:

$$J = J_0 + \lambda_1 J_1 + \lambda_2 J_2$$

The reconstruction loss of observed drug-disease associations:

$$J_0 = \|\Theta - U\Lambda V^T\|_F^2$$

Similar Drugs/diseases (latent groups) have similar behaviors

■ The reconstruction loss of drug similarities:

$$J_{1} = \sum_{k=1}^{K_{d}} \boldsymbol{\omega}_{k} \parallel \boldsymbol{D}_{k} - \boldsymbol{U}\boldsymbol{U}^{T} \parallel_{F}^{2} + \boldsymbol{\delta}_{1} \parallel \boldsymbol{\omega} \parallel_{2}^{2}$$

The reconstruction loss of disease similarities:

$$J_{2} = \sum\nolimits_{l=1}^{K_{s}} \boldsymbol{\pi}_{l} \parallel \boldsymbol{S}_{l} - \boldsymbol{V} \boldsymbol{V}^{T} \parallel_{F}^{2} + \boldsymbol{\delta}_{2} \parallel \boldsymbol{\pi} \parallel_{2}^{2}$$

Reconstruct integrated drug/disease networks

Putting everything together, we obtained the optimization problem to be resolved:

$$\min_{U,V,\Lambda,\Theta,\omega,\pi}J$$
, subject to $U\geq 0$, $V\geq 0$, $\Lambda\geq 0$, $\omega\geq 0$, $\omega^{T}\mathbf{1}=1$, $\pi\geq 0$, $\pi^{T}\mathbf{1}=1$, $P_{\Omega}(\Theta)=P_{\Omega}(R)$

BCD approach for solving the problem

• Block Coordinate Descent (BCD) strategy: The BCD approach works by solving the different groups of variables alternatively until convergence. At each iteration, it solves the optimization problem with respect to one group of variables with all other groups of variables fixed.

Algorithm 1: A BCD Approach for Solving Problem (11)

Require:
$$\lambda_1 \ge 0$$
, $\lambda_2 \ge 0$, $\delta_1 \ge 0$, $\delta_2 \ge 0$, $K_d > 0$, $K_s > 0$, $\{D_k\}_{k=1}^{K_d}$, $\{S_l\}_{l=1}^{K_s}$, R

1: Initialize
$$\omega = (1/K_d)\mathbf{1} \in \mathbb{R}^{K_d \times 1}, \ \pi = (1/K_s)\mathbf{1} \in \mathbb{R}^{K_s \times 1}$$

2: Initialize U and V by performing Symmetric Nonnegative Matrix Factorization on $\tilde{D} = \sum_{k=1}^{K_d} \omega_k D_k$ and $\tilde{S} = \sum_{l=1}^{K_s} \pi_l S_l$.

3: while Not Converge do

- 4: Solve Θ as described in section 2 (as a constrained Euclidean projection)
- 5: Solve ω and π as described in section 3 (as a standard Euclidean projection onto a simplex)

6: Solve Λ as described in section 4 (as a nonnegative quadratic optimization problem)

- 7: Solve U as described in section 5 (as a nonnegative quadratic optimization problem)
- 8: Solve V as described in section 6 (as a nonnegative quadratic optimization problem)

Closed-form solution

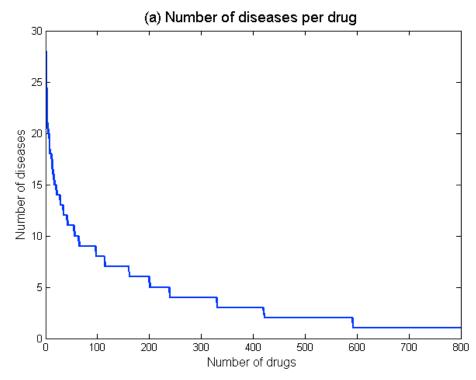
Solved by Projected Gradient Descent (PGD) method

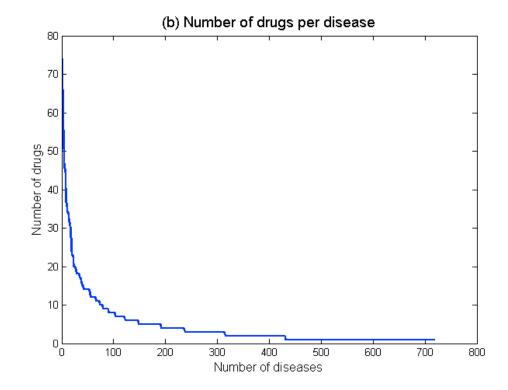
9: end while

Computational complexity is O(Rrmn), where R is the number of BCD iterations, and r is the average PGD iterations when updating Λ , U, and V.

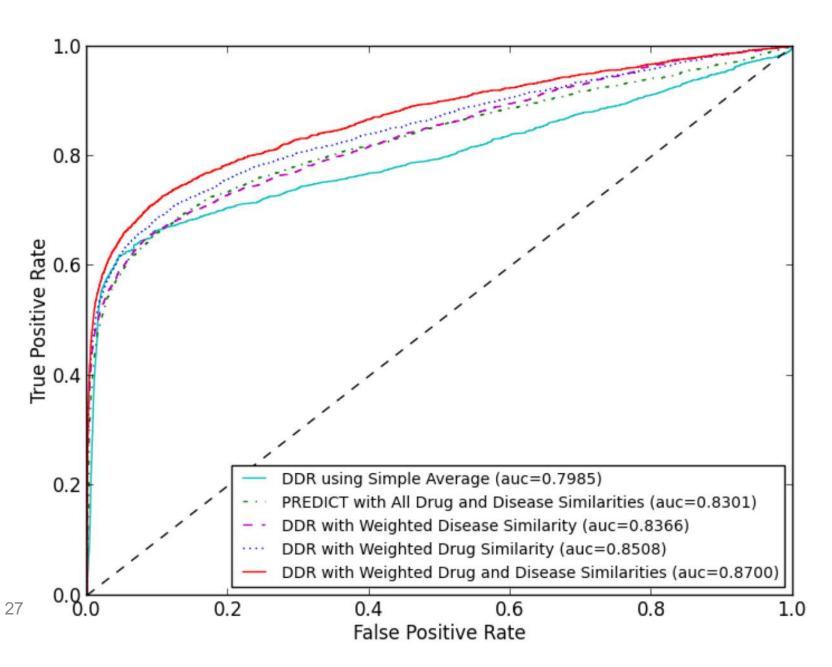
Data Description

- Benchmark dataset was extracted from NDF-RT, spanning 3,250 treatment associations between 799 drugs and 719 diseases
- Three 799×799 matrices were used to represent drug similarities between 799 drugs from different perspectives
- Three 719×719 matrices were used to represent disease similarities between
 719 human diseases from different perspectives

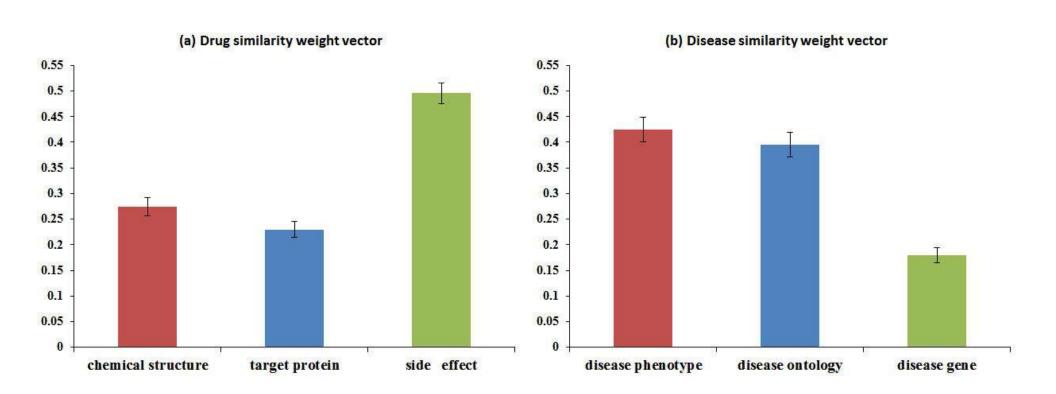




ROC comparisons of five drug repositioning approaches



Distribution of weights of the similarity weight vectors obtained by JMF



Top 10 drugs for diseases Alzheimer's Disease (AD) and Systemic Lupus Erythematosus (SLE)

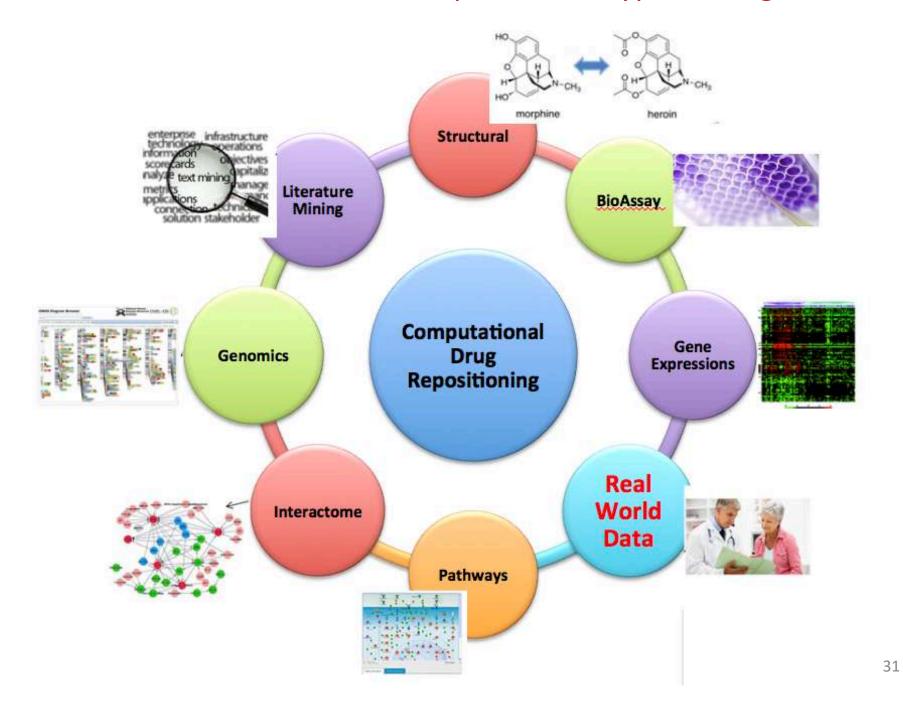
(a) Top 10 drugs predicted for AD			(b) Top 10 drugs predicted for SLE				
Drug	Prediction Score	Clinical Evidence?		Drug	Prediction Score	Clinica	l Evidence?
Selegiline*	0.7091			Desoximetasone	0.7409	No	
Carbidopa	0 6924	No	Repositioning candidates	Azathioprine*	0.7269		
Amantadine	0.6897	No		Leflunomide	0.7078	Yes	
Procyclidine	0.6826	No		Fluorometholone	0.7054	No	
Valproic Acid*	0.6745			Triamcinolone*	0.6862		
Metformin	0.6543	Yes	carididates	Beclomethasone	0.6522	No	
Bexarotene	0.6426	Yes		Etodolac	0.6445	No	
Neostigmine	0.6385	No		Hydroxychloroquine*	0.6374	_	
Galantamine*	0.6348			Nelfinavir	0.6371	Yes	
Nilvadipine	0.6159	Yes	1 1 ' 1	Mercaptopurine	0.6150	No	

^{*} denotes the drug is known and approved to treat the disease

Summary of joint matrix factorization framework

- We proposed a general computational framework, to explore drug-disease associations from multiple drug/disease sources
- Our method could help generate drug repositioning hypotheses, which will benefit patients by offering more effective and safer treatments
- The computational framework and its solution can be used in other applications (gene-disease, drugpatient, etc.)

Next: Multi-channel detailed computational hypothesis generation



And even beyond the hypothesis generation...

biology

chemistry

dmpk

pharmacology

toxicology

Home » Pharmacology » Diabetes and Obesity » Obese Mice

ob/ob Diabetes Model - 16 Mice

Service Description

Provider: is a US company with laboratories in Hangzhou, China. The laboratory has been offering exploratory (non-GLP) pharmacology services to US and Chinese biopharma since 2004.

Background: The obese mutant mouse model was first reported by Ingalls A *et al* from the Jackson Laboratory in 1951 (Obese, a New Mutation in the House Mouse [164 KB]). The obese mouse resulted from a spontaneous mutation in a gene that was named *ob* in the V stock. Mice homozygous for the obese spontaneous mutation, (Lep^ob^; commonly referred to as *ob* or *ob/ob*), are first recognizable at about 4 weeks of age. Homozygous mutant mice gain weight rapidly and may reach three times the weight of wild-type controls. In addition to obesity, mutant mice exhibit hyperphagia, a diabetes-like syndrome of hyperglycemia, glucose intolerance, elevated plasma insulin, subfertility, impaired wound healing, and an increase in hormone production from both pituitary and adrenal glands. Friedman J *et al* reported leptin in 1994, and demonstrated that leptin, the product of the *ob* gene, was produced in white adipose tissue and served as the peripheral signal to the central nervous system of nutritional status.

Service Details: This service offers a 28 day db/db mouse model of T2DM and obesity. Customer has various options that are conveved to Links Biosciences using a Service Order Form. Customer assigns up to 16 mice to

9 week turn around time Provided By

\$9,000.00 USD



Be Brilliant™

Enter our online marketplace below to find, compare and purchase research services from hundreds of contract research organizations (CROs).

"Had I known that I can get chick embryo assays done for \$2000 in four weeks, I would not have asked a postdoc to spend a year setting it up in our lab."

Holger Wesche, Principal Scientist, Large Pharma

Ask An Expert

Use our free service locator program to find the research services you need.

Register In Seconds

Get free access to detailed information on thousands of research services.

Best Price Guarantee

Purchase services with confidence that you are getting the lowest possible price.

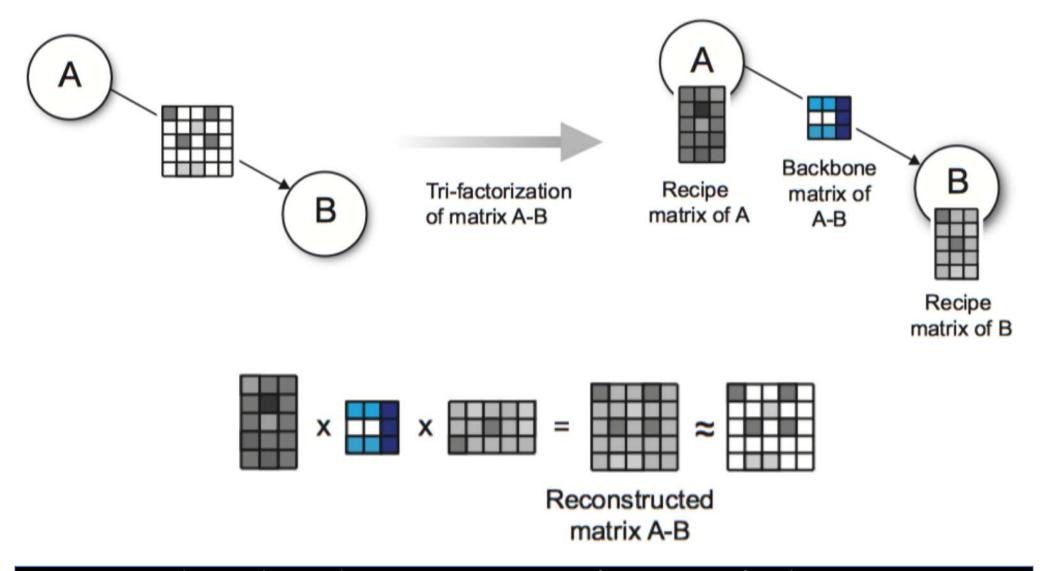
click for more information

Big data researchers will have a higher impact in biomedicine

Recent Applications in Biomedicine

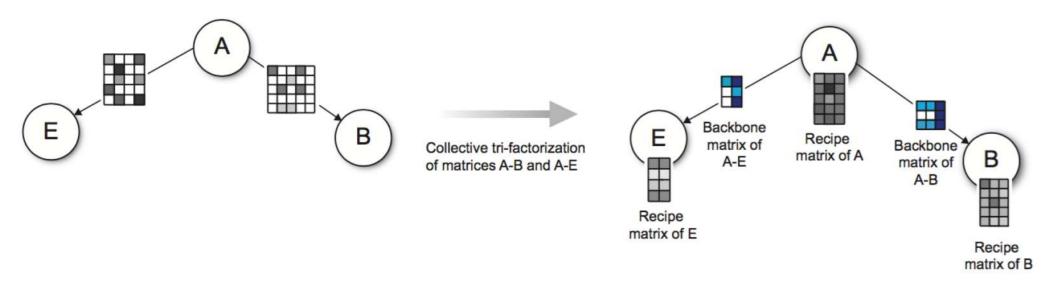
- Similarity Network Fusion and Identification of Cancer Subtypes
- Joint Matrix Factorization and Drug Repositioning
- Data Fusion by Simultaneous Matrix Tri-Factorization and Drug-Induced Liver Injury Prediction
 - Tensor Factorization and Patient Phenotyping

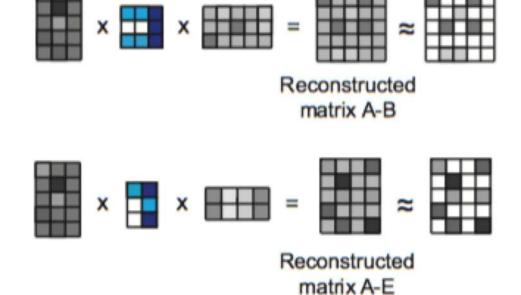
Matrix Tri-Factorization



Ding C, Li T, Park H. Orthogonal Nonnegative Matrix Tri-factorizations for Clustering. KDD, 2006. Wang F, Li T, Zhang C. Semi-supervised clustering via matrix factorization. SDM, 2008.

Simultaneous Matrix Tri-Factorization

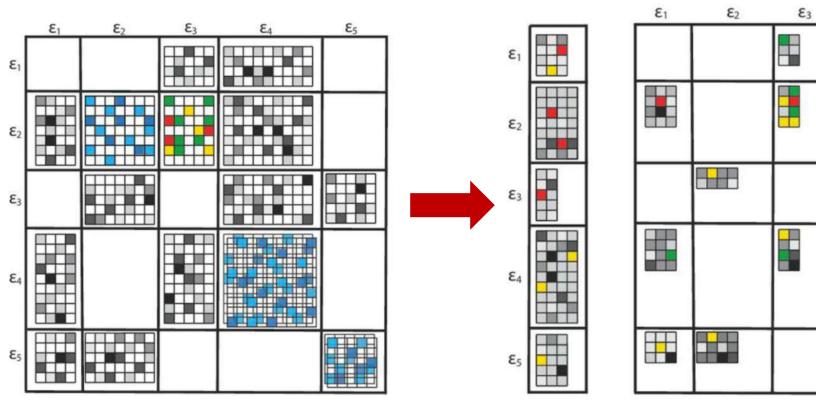


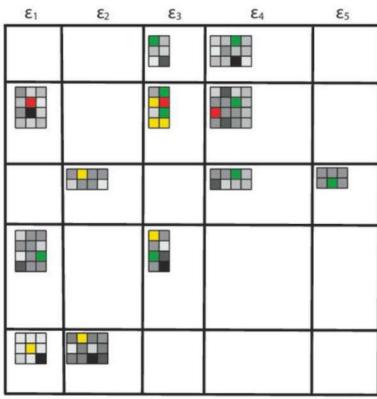


Data Fusion by Simultaneous Matrix Tri-Factorization

Input to data fusion

Simultaneous Constrained Decomposition



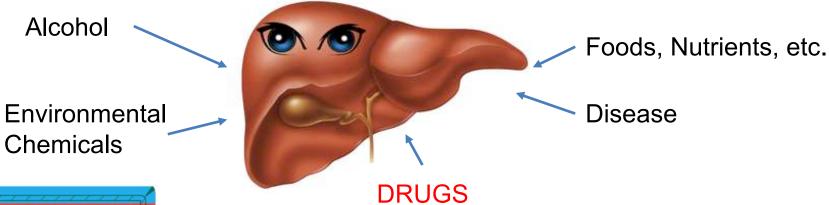


$$\min_{\mathbf{G} \geq 0} J(\mathbf{G}; \mathbf{S}) = \sum_{\mathbf{R}_{ij} \in \mathcal{R}} ||\mathbf{R}_{ij} - \mathbf{G}_i \mathbf{S}_{ij} \mathbf{G}_j^T||^2 + \sum_{t=1}^{\max_i t_i} \operatorname{tr}(\mathbf{G}^T \mathbf{\Theta}^{(t)} \mathbf{G}),$$

Repeat until convergence:

- Fix G, update S
- Fix S, update G

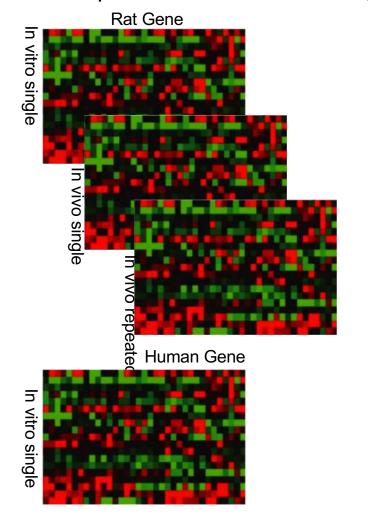
Liver and Drug-Induced Liver Injury (DILI)

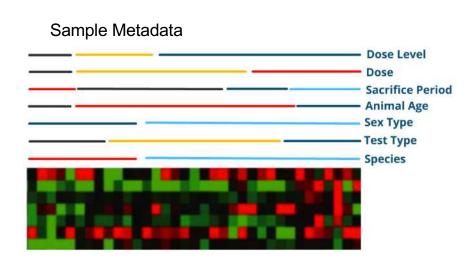


- Extra Strength Acetaminophen' 8 fl oz (240 ml) BURST Drug Facts (continued) Uses temporarily relieves minor aches and pains due to: ■ the common cold
 ■ headache sore throat m temporarily reduces fever Warnings Liver warning: This product contains acetaminophen. Severe liver damage may occur if you take more than 4,000 mg of acetaminophen in 24 hours ■ with other drugs containing acetaminophen 3 or more alcoholic drinks every day while using this product
- "Approved drugs are the most common cause of acute liver failure in the USA" - FDA
- DILI is the MOST frequent reason for drug withdrawal during drug discovery, clinical trials, and after drugs are approved for the marketplace

CAMDA 2012 Task: DILI Prediction

- CAMDA: Critical Assessment of Massive Data Analysis
- The Japanese Toxicogenomics Project (TGP) creates a gene expression database using the Affymetrix GeneChip arrays to measure the effects of 131 chemicals, mainly medical drugs, on the liver.
- DILI potential has been categorized as severe, moderate, or mild.





Multi-classifier system			
FSS	Stacking with LR	Human in Rat vitro in vitro	Rat in vitro
PCA	RF, GBT, LR, SVM	0.741	0.765
CUR	RF, GBT, LR, SVM	0.758	0.755

Data Fusion of Additional Sources

Histological and clinical chemistry data (Rat, in vivo)

Hematology

RBC, Neutrophil, Eosinophil, Basophil, Monocyte, Lymphocyte

Liver Weight

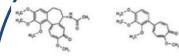
Terminal body weight Liver weight, Relative liver weight

Blood Chemistry

ALP, Cl, TC, Ca, TG, IP, PL, TP, TBIL, RALB, DBIL, A/G GLC, AST (GOT), BUN, ALT (GPT), CRE, LDH, Na gamma-GTP, K

Drug information from DrugBank

Chemical Structure

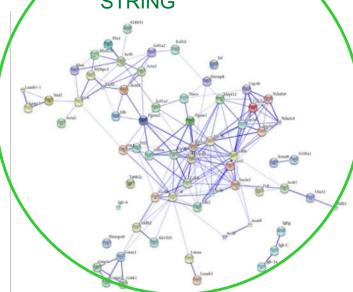


Drug Interactions

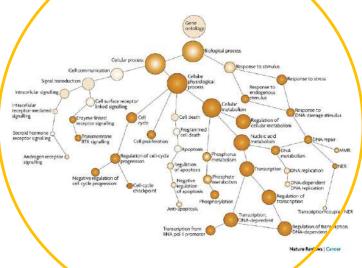
The metabolism of Tacrine, a CYP1A2 substrate, may be reduced by strong CYP1A2 inhibitors such as Ketoconazole. Consider modifying therapy to avoid Tacrine toxicity. Monitor the efficacy and toxicity of Tacrine if Ketoconazole is initiated, discontinued or if the dose is changed.

Drug Targets

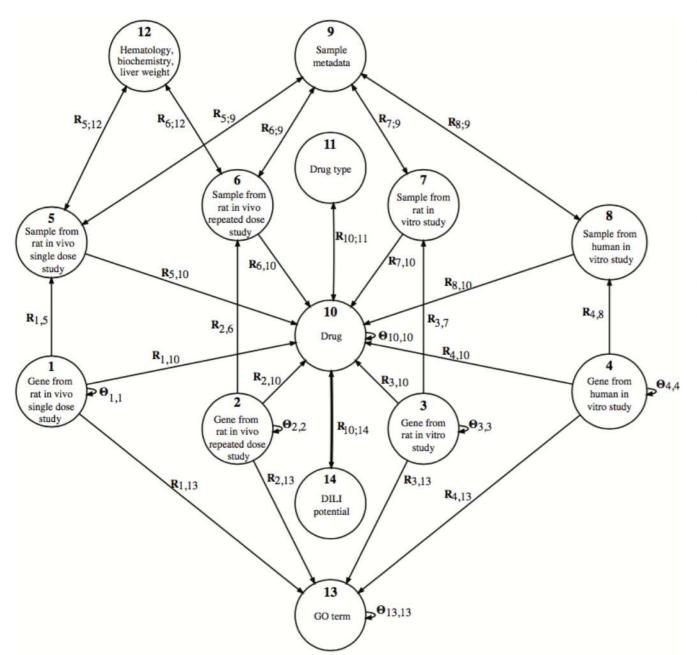
Protein-protein interactions (PPI) from STRING



Gene Ontology (GO)



Matrix Factorization-Based DILI Prediction



Data fusion studies	AUC
In vivo studies	0.819
In vitro studies	0.790
Human in vitro study	0.793
Animal in vitro study	0.799
Animal studies	0.811
Human studies	0.792
All studies	0.810

Given the aim to predict DILI potential in humans:

- Animal studies may be replaced with in vitro assays (AUC = 0.799)
- Liver injury in humans can be predicted from animal data (AUC = 0.811)
- animal in vivo > animal in vitro ≈ human in vitro

Zitnik M, Zupan B. Matrix factorization-based data fusion for drug-induced liver injury prediction. Systems Biomedicine 2014. (First prize winner at CAMDA 2013 Conference)

Recent Applications in Biomedicine

- Similarity Network Fusion and Identification of Cancer Subtypes
- Joint Matrix Factorization and Drug Repositioning
- Data Fusion by Simultaneous Matrix Tri-Factorization and Drug-Induced Liver Injury Prediction

Tensor Factorization and Patient Phenotyping

Phenotyping from Electronic Medical Records (EMR)

Phenotype (American Heritage Dictionary)

 The observable physical or biochemical characteristics of an organism, as determined by both genetic makeup and environmental influences.

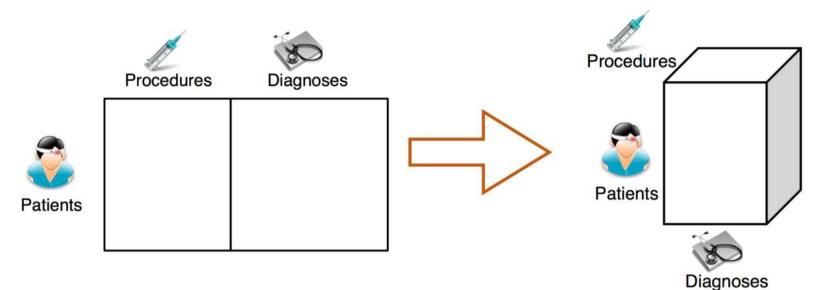
Why phenotyping from EMR

- Mapping noisy, incomplete, and potentially inaccurate patient representation from EMR to meaningful medical concepts Feature engineering
- Extracting clinical meaningful groups of patients from EMR Cohort generation

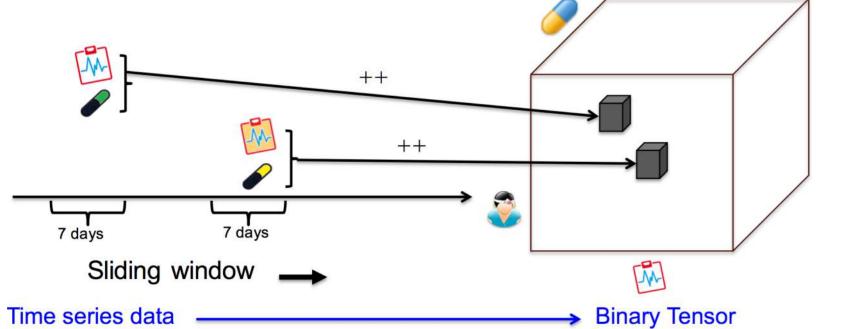
	Heart Failure Phenotype	
Diabetes Phenotype	Other forms of heart disease Complications of surgical and medical care Symptoms Cardiovascular Procedures Hematology and Coagulation Procedures Evaluation and Management of Other Outpatient Services Surgical Procedures on the Cardiovascular System Chemistry Pathology and Laboratory Tests	
Diseases of other endocrine glands Complications of surgical and medical care		
Chemistry Pathology and Laboratory Tests Organ or Disease Oriented Panels Hematology and Coagulation Procedures Surgical Procedures on the Cardiovascular System		

Ho J, Ghosh J, Sun J. Marble: High-throughput Phenotyping from Electronic Health Records via Sparse Nonnegative Tensor Factorization. KDD 2014.

Tensor representation for EMR

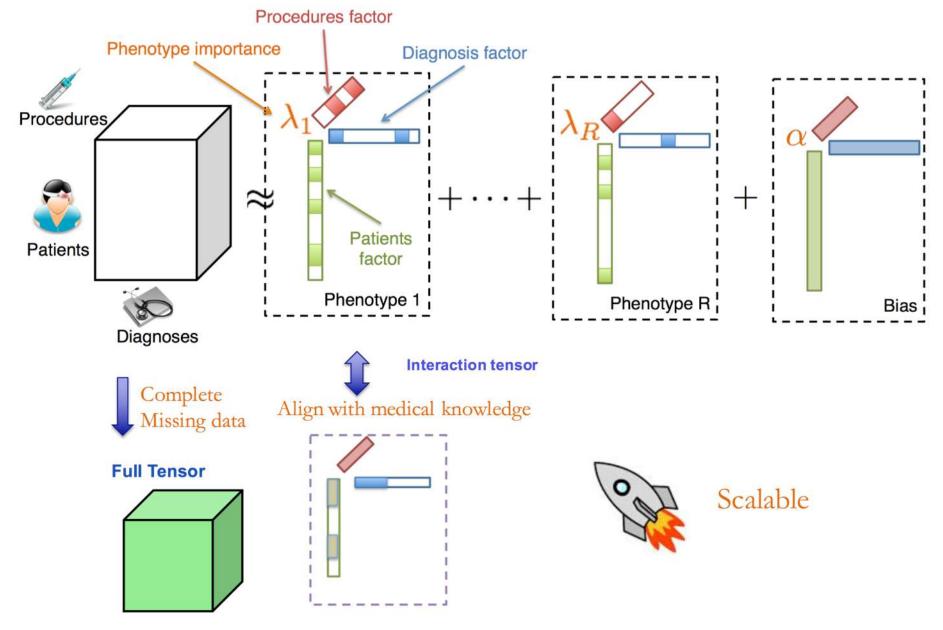


Capture structured source interactions (e.g. group of procedures to treat a disease)



Co-occurrences of events are captured in the tensor as binary values

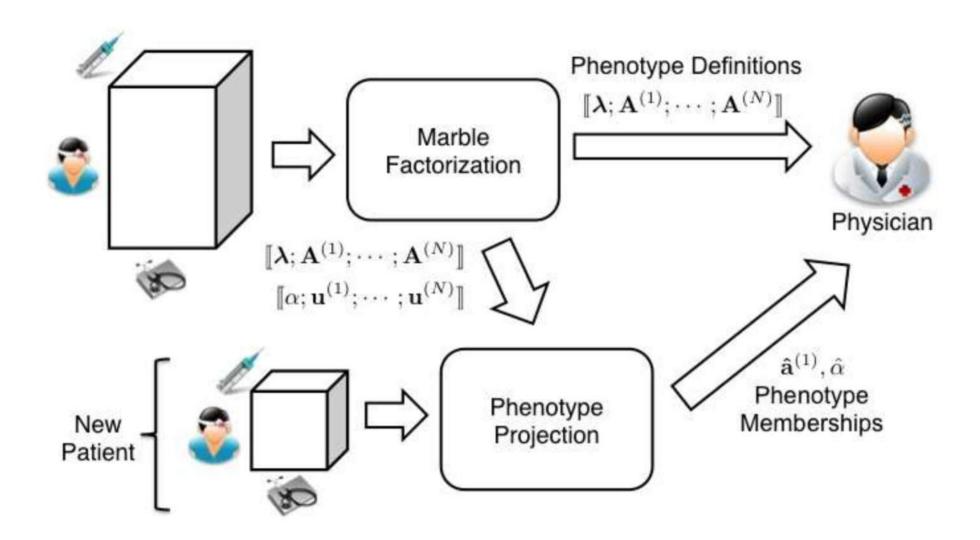
CP factorization for EMR



Ho J et al. Marble: High-throughput phenotyping from Electronic Health Records via sparse nonnegative tensor factorization. KDD 2014.

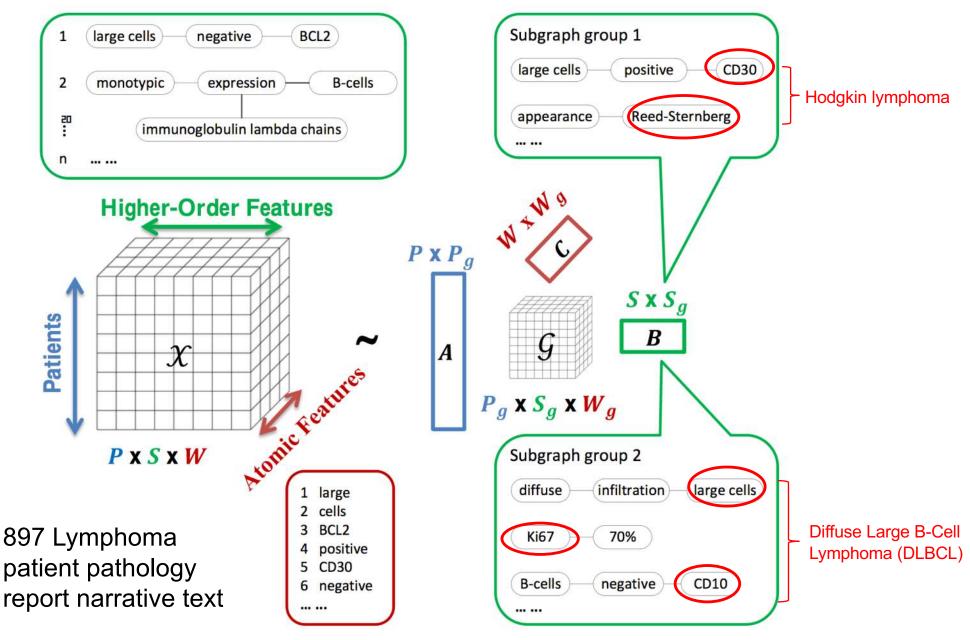
Wang Y et al. Rubik: Knowledge guided tensor factorization and completion for health data analytics. KDD 2015.

A possible application of EHR-phenotyping



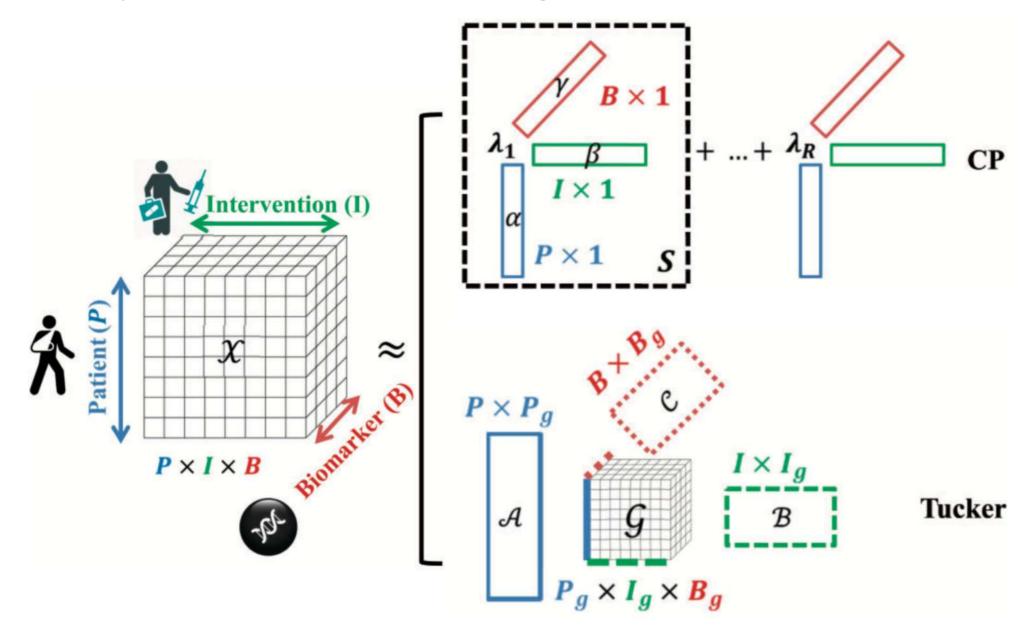
Ho J, Ghosh J, Sun J. Marble: High-throughput Phenotyping from Electronic Health Records via Sparse Nonnegative Tensor Factorization. KDD 2014.

Tucker factorization for pathology reports

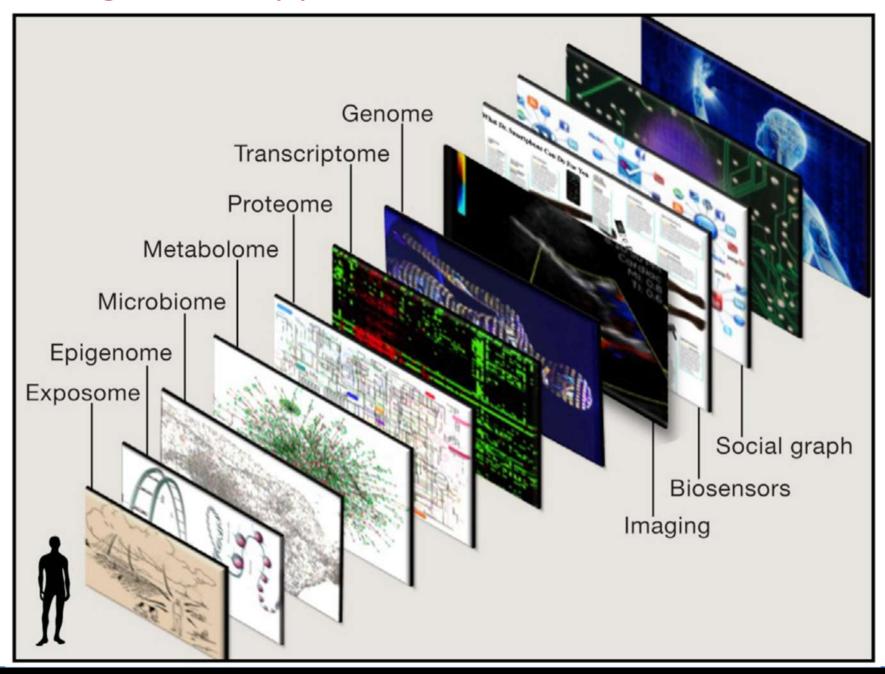


Luo Y et al. Subgraph augmented non-negative tensor factorization (SANTF) for modeling clinical narrative text. *JAMIA* 22:1009-1019, 2015.

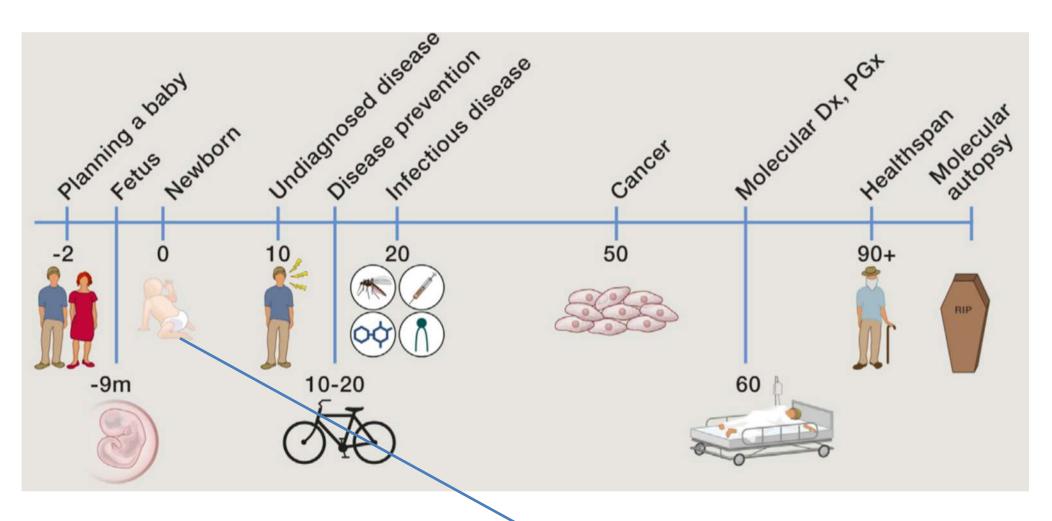
Comparison of tensor modeling and factorization schemes



Challenges and opportunities: multiscale networks



Dynamic network: timeline of individualized genomic medicine

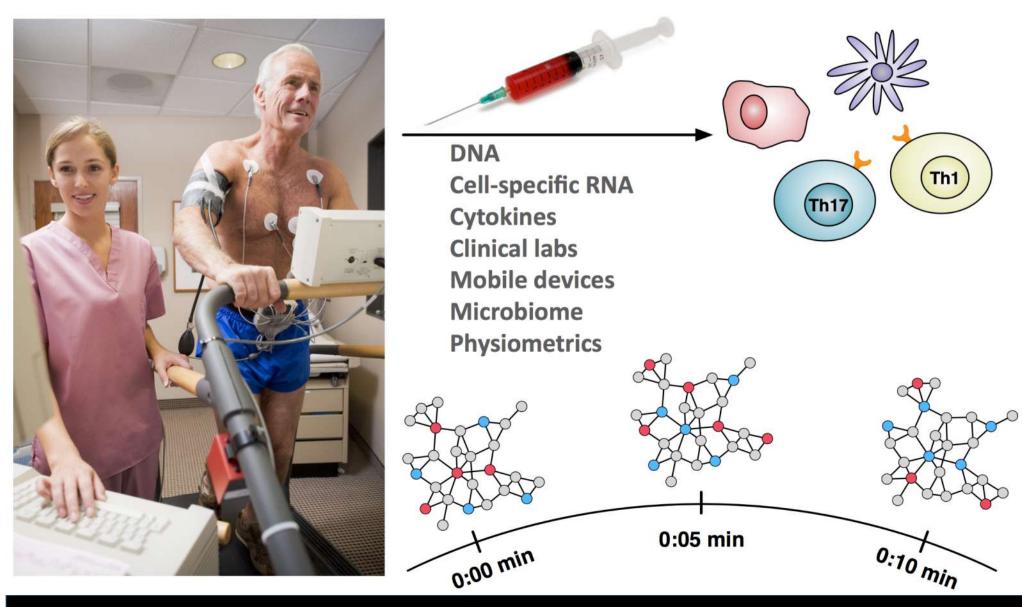


During an individual's lifespan: from prewomb to tomb

Boland MR et al. Birth Month Affects Lifetime Disease Risk: A Phenome-Wide Method. JAMIA 2015.

Topol E. Individualized Medicine from Prewomb to Tomb. Cell 157, 2014.

Personalized multiscale networks to model dynamics of complex disease



Healthcare is really a big data industry

Our commitment to Health – IBM Moonshot

"I'm telling you, our moonshot will be the impact we will have on Healthcare. It has already started. We will change and do our part to change the face of Healthcare. I am absolutely positive about it. And that, to me, while we do many other things, that will be one of the most important."

IBM Life Sciences Solutions

Accelerated Product Innovation

Advance next generation discovery and development

Commercial Transformation

Act on insights to drive value

Analytics-Driven Care Management

Empower people to make better decisions to improve outcomes

IBM Watson Health

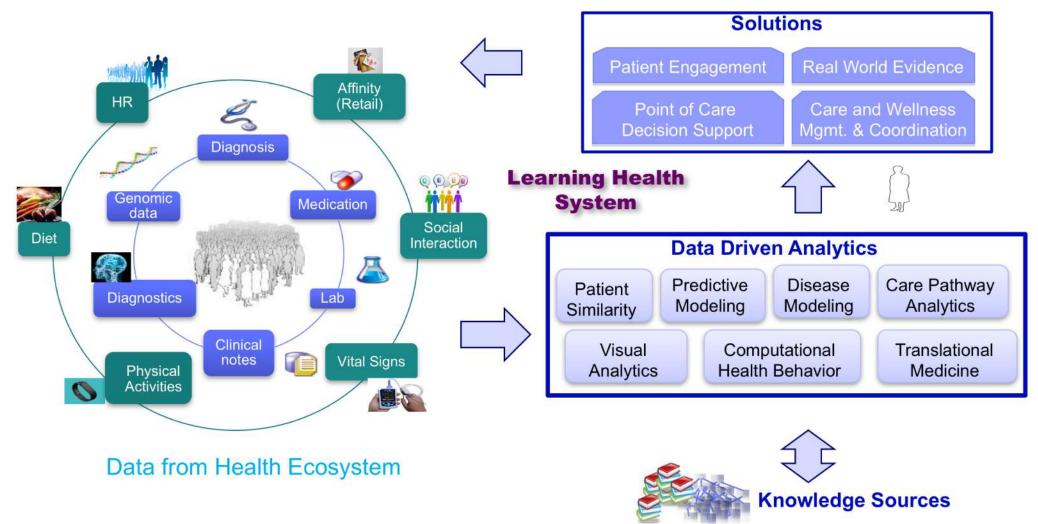
Data
Structured & Unstructured

Insights
Cognitive & Advanced Analytics

Solutions
IBM & Ecosystem Solutions

Key Acquisitions

Center for Computational Health @ IBM



Multiple Positions Available:

- Interns
- Postdocs
- Research Engineers
- Research Staff Members

Contact: pzhang@us.ibm.com

Thank you!!!

"When you have a hammer, everything looks like a nail"