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Drug repurposing (also known as, drug repositioning) is a 
strategy to accelerate the drug discovery process by identi-
fying novel uses for existing approved drugs1. The primary 

advantage of drug repurposing over traditional drug development 
is that it starts from compounds with well-characterized pharma-
cology and safety profiles and can substantially reduce the risk of 
adverse effects and attrition in clinical phases2.

While many successful repurposed drugs (for example, 
Viagra for erectile dysfunction) have been discovered serendipi-
tously3, computation-based repurposing methods have developed 
recently by leveraging structural features of compounds or pro-
teins4,5, genome-wide association study (GWAS)6, transcriptional 
responses7 and gene expression8. These methods focus primarily 
on using pre-clinical information. Unfortunately, the clinical thera-
peutic effects in humans are not always consistent with pre-clinical 
outcomes9.

In healthcare, real-world data (RWD)10 refers to longitudinal 
observational data derived from sources that are associated with 
outcomes in a heterogeneous patient population in real-world set-
tings, such as patient surveys, electronic health records (EHRs), 
and claims and billing activities. Since RWD are direct observa-
tions from human bodies, they become a promising source for drug 
repurposing. A few researchers have already validated a small num-
ber of repurposing drug candidates on RWD11,12. However, there 
are some limitations with these approaches. First, most studies are 
complementary (that is, the original hypotheses usually come from 
other studies). Second, their studied number of repurposing candi-
dates is limited and unable to proactively generate de novo repur-
posing drug candidates.

In this study, we follow protocols of randomized clinical trial 
(RCT) design13, and computationally screen repurposing candi-
dates for beneficial effect by explicitly emulating the corresponding 
clinical trials using RWD. Considering the inherent characteristics 
of RWD (that is, temporal sequence data and existing confound-
ing variables14), we apply deep learning and causal inference meth-
odologies to control the confounders in RWD, and systematically 

estimate the drug effects on various disease outcomes. Specifically, 
the estimated drug effects are obtained by long short-term memory 
(LSTM)15 and inverse probability of treatment weighting (IPTW)16, 
on MarketScan claims data17.

As a test case, we apply the proposed drug repurposing frame-
work to a coronary artery disease (CAD) cohort of millions of 
patients and emulate RCTs for multiple drug candidates, estimating 
their effects on CAD progression outcomes.

In general, our contribution is threefold:

t� We develop a framework for high-throughput screening of 
on-market drugs by emulating, for each drug, an RCT that  
evaluates its bene!cial e"ect. #is allows repurposed drug  
candidates to be proactively generated from existing large-scale 
RWD.

t� We present an innovative study design for the estimation of a 
drug’s e"ect from longitudinal observational data. #e CAD 
cohorts are automatically derived under our framework, which 
accelerates the process of computational drug repurposing.

t� We propose a propensity score estimation model based on deep 
learning to correct for confounding and selection biases. Experi-
mental comparisons to the logistic-regression-based propensity 
score estimation model show that our proposed deep learning 
model e"ectively estimates drug e"ects from RWD, paving the 
way for drug repurposing.

t� We evaluate the therapeutic e"ect of drug combinations, 
drug-class-levelled candidates on disease outcomes and fur-
ther explore potential repurposing opportunities with di"erent 
model parameters. We also compare our framework with three 
existing pre-clinical drug repurposing methods, which gives a 
favourable outcome.

Overall framework
We develop a high-throughput, computational drug-repurposing 
pipeline (Fig. 1) that, given a disease cohort (for example, CAD 
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patients), extracts a list of potential repurposing drug ingredients  
and, for each, identifies the corresponding user and non-user 
sub-cohorts. It then computes, for all patients in both sub-cohorts, 
a large number of features (confounding factors), as well as disease 
progression outcomes. The treatment effects are estimated after cor-
recting for confounding and selection biases using the deep learning 
framework (Fig. 2). The framework is equipped with an attention 
mechanism that provides interpretability for the model. Drug  
ingredients with statistically significant beneficial effects will be 
considered as repurposed drug candidates and suggested as treat-
ments for CAD. This algorithm shows an overview of the steps in 
estimating the effect of assigned treatment on the outcome from 
observational data:

Input: patient data: assigned treatment, outcomes, values for 
potential confounders

Output: repurposed drug candidates, and their estimated effect, 
unbalanced feature ratio and significance

1: Generate user and non-user sub-cohorts for the treatment
2:  Compute balancing weights for all patients in both sub-cohorts 

via LSTM-based IPTW
3:  Estimate the effect over multiple outcomes after correcting for 

the biases in the confounders (equation (1))
4:  Compute the unbalanced feature ratio for the treatment after 

re-weighting using standardized difference (equation (2))
5:  Estimate the significance of effect and compute adjusted 

p-values using bootstrapping
6:  if estimated effect < 0 and adjusted p-value < 0.05 and  

unbalanced feature ratio < 2% then
7:  return the estimated effect, unbalanced feature ratio and  

computed p-value
8: end if

Results
In this section we introduce the dataset we use for this study and 
then demonstrate the performance of our model in CAD drug 
repurposing experiments.

Dataset. We identified around 107.5 million distinct patients in 
the MarketScan Commercial Claims and Encounters (CCAE)17 
from 2012 to 2017, which contain individual-level, de-identified 
healthcare claims information from employers, health plans and 
hospitals. CCAE contains the largest number of patients and the 
most diverse population of the MarketScan data. The MartketScan 
table structure and data flow can be found in its user manual18. 
We extracted patient data from three source tables: Outpatient 
Drug (D), Inpatient Admission (I) and Outpatient Services (O). 
Then we compiled and formulated the raw data into five separate  
tables that can be easily prepossessed. The details of these tables and 
demo input data can be found in our Github repository at https://
github.com/ruoqi-liu/DeepIPW.

MarketScan claims data are primarily used for evaluating health 
utilization and services. The overall distribution of patients during 
the recording period is shown in Extended Data Fig. 1a. We con-
sider both inpatient and outpatient claims. CAD cohort criteria 
are defined using International Classification of Diseases (ICD) 
codes19 (Supplementary Table 1). In total, there were 1,178,997 
CAD patients. We refer to the first date when patients were  
diagnosed with CAD as their CAD initiation date. Extended  
Data Fig. 1b shows the patient distribution of time before/after 
CAD initiation date.

We identify three categories of study variable: demographic charac-
teristics, diagnosis codes and prescription medication. Demographic 
characteristics in MarketScan CAD data include information on age 
and gender for each patient. Extended Data Fig. 1d shows the age and 
gender statistics distributions of our dataset. Because a majority of 
the data come from commercial claims, race and ethnicity informa-
tion is incomplete and is not included in the analysis. Diagnosis codes 
in MarketScan CAD data are defined using the ICD codes for billing 
purposes. There are 57,089 ICD-9/10 codes considered in the data-
set. Prescription medications in MarketScan CAD data also contain 
all prescription drug claims, which contain prescription drug name 
(generic and brand), national drug code (NDC) and the number of 
days of supply approved. By matching NDCs to observational medi-
cal outcomes partnership (OMOP) ingredient concept IDs20, we get 
1,353 unique drugs in the dataset for drug repositioning screening. 
For drugs with multiple ingredients, we consider each active ingredi-
ent separately in the mapping processes.

To evaluate the drug effect, we consulted domain experts to 
define a set of clinically relevant events linked to CAD as the dis-
ease outcomes (for example, heart failure onset and stroke onset). 
These definitions are based on ICD codes and can be found in 
Supplementary Tables 2 and 3. Since CAD is the major risk fac-
tor for both heart failure21,22 and stroke23,24, we hypothesize that an 
effective drug will lower the risks of CAD patients developing those 
diseases. Extended Data Fig. 1c demonstrates the time to develop 
outcomes from the CAD initiation date. The confounding variables 
affect both treatment assignment of patients and an outcome used 
in the trial. We consult domain experts to compile a list of hypoth-
esized confounders for the CAD case study with respect to the study 
variables illustrate above: demographics, co-morbidities (diagnosis 
codes) and co-prescribed drugs.

Model performance. Evaluation metrics. Treatment effect esti-
mation. In this study, we leverage average treatment effect (ATE) 
to examine the treatment effect at the population level, which is 
defined as

ATE ¼ EðY1Þ $ EðY0Þ ð1Þ

where EðY1Þ
I

 and EðY0Þ
I

 are the expected potential treated and 
control outcomes of the whole population, respectively. The val-
ues of ATE are used to determine whether the given treatment can 
improve disease outcomes or not.

Observational medical database

Prescribed
drugs

User/non-user
cohorts

Outcomes and
confounders

Study design

Treatment
assignment

Baseline and
followup period

Outcomes

Hypothesized
confounders

Treatment effect estimation
inverse probability weighting, long-short term memory

RCT
emulator

drug1

RCT
emulator

drug2

RCT
emulator

drugk

Beneficial effect 
on outcomes

Repurposed drug candidates

Fig. 1 | Flowchart of overall drug repurposing framework. First, a list of 
potential repurposing drug ingredients are extracted from the observational 
medical database given a disease cohort. Second, for each ingredient, the 
framework identifies the corresponding user and non-user sub-cohorts, 
and computes a large number of features for patients in both sub-cohorts. 
Third, the treatment effects are estimated via emulating an RCT for each 
ingredient to adjust confounding and biases.
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Testing feature balance. We evaluate the performance of mod-
els by measuring features’ balance between the weighted user 
and non-user sub-cohorts generated by the IPTW. Given patient 
weights from IPTW, we quantify the balance for each feature using 
its standardized mean difference (SMD), which is the difference in 
the variable means between the two treatment groups, divided by 
the combined standard deviation. To be exact, we use the following 
definition for standardized difference:

SMD ¼ jμuser $ μnon$userjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsuser2 þ snon$user

2Þ=2
p ð2Þ

where μuser and μnon-user are the mean in user cohort and non-user 
cohort; suser2

I
 and snon$user

2

I
 are sample variance of variables in two 

sub-cohorts. For binary variables, the variance s2 is calculated by 
μ(1 − μ). We consider a standardized difference greater than 0.1 as 
unbalanced25 and compute the unbalanced feature ratio (that is, 
unbalanced/all features) before and after weighting to evaluate the 
performance of balancing. The user and non-user sub-cohorts are 
considered as balanced if their unbalanced feature ratio is below 2% 
after weighting.

Confidence intervals and significance of effect. We use bootstrap-
ping26 to calculate the confidence intervals of estimators of EðY1Þ

I
 

and EðY0Þ
I

, and statistical significance of ATE. For each candidate 
ingredient, we repeatedly generate multiple different control drugs 
via random sampling with replacement, and the analysis is repeated 
in each bootstrap sample. The 95% confidence interval is then com-
puted by using the standard normal approximation: ±1.96 times the 
estimate of the standard error. The p-value of the effect estimator 
can be computed by the normal cumulative distribution function 
of estimators. We use adjusted p-value27 as a statistically significant 
measurement. We consider a repurposing drug candidate as signifi-
cant if its adjusted p-value is below 0.05.

Performance over repurposing drug candidates. We identified 55 
qualified drugs following our study design (Methods). Then we 

estimated the treatment effect on various disease outcomes (that is, 
heart failure and stroke). The flowchart of data collection and study 
process can be found in Supplementary Fig. 2.

Among the qualified drugs obtained from the data, four of them 
are known CAD treatments: amlodipine, diltiazem, ticagrelor and 
rosuvastatin (drug label information is collected from SIDER28 and 
DrugBank29). Our framework successfully retrieved three of these 
known drugs: amlodipine, diltiazem and rosuvastatin. We demon-
strate the distribution of estimated ATE in Fig. 3. Here, we show 
the drug candidates with balanced user and non-user sub-cohorts 
after re-weighting and statistically significant estimates (adjusted 
p-value). All the drugs are ranked from left to right according to 
increasing estimated ATE values. Based on the definition of ATE 
(that is, the weighted average of observed outcomes from the user 
and non-user sub-cohorts), the drug ingredients with ATE values 
smaller than 0 are identified as improving disease outcomes, while 
the drug ingredients with ATE values larger than 0 are identified 
to worsen disease outcomes. For drugs with beneficial effects, we 
colour those with known CAD indications in red and those without 
in blue.

From the results, we observe that nine drugs yield a beneficial 
effect on disease outcomes among the sixteen selected significant 
drug candidates. Specifically, only three have been indicated for 
CAD according to their drug labels information. The remaining 
six drugs, which have not been indicated for treating CAD but can 
improve the disease outcomes, are considered as repurposed drug 
candidates. We find evidence to support these six drug candidates 
from related literature and web resources as follows: (1) metopro-
lol is one of the most commonly used beta-blockers for treating 
high blood pressure and chest pain. It shows beneficial effects in 
patients with heart failure associated with CAD30; (2) fenofibrate is 
mainly used to treat abnormal blood lipid levels and also appears 
to decrease the risk of CAD in patients with diabetes mellitus31; (3) 
hydrochlorothiazide, which is often used to treat high blood pres-
sure and diabetes insipidus32, also shows effectiveness in preventing 
CAD33; (4) pravastatin has also shown a beneficial effect on CAD34; 
(5) for simvastatin, results from RCTs show that it can reduce the 
occurrence of heart failure in patients with CAD35; (6) valsartan, a 
kind of angiotensin receptor blocker, results in improved coronary 
micro-vascular flow reserve, suggesting a direct benefit in hyper-
tensive patients with stable CAD36.

We further list the sub-cohort size, feature balancing and esti-
mated ATE values for each drug candidate in Table 1. The results 
of all 55 drugs can be found in Supplementary Table 4. The first 
column lists the names corresponding to drugs in Fig. 3. The sec-
ond and third columns denote the number of patients in user and 
non-user sub-cohorts, respectively. The next two columns denote 
the average number of unbalanced covariates before and after 
re-weighting. The unbalanced ratio column represents the ratio of 
unbalanced covariates to all covariates after re-weighting (that is, 
the number of unbalanced covariates divided by the total number of 
covariates). And the last two columns are the estimated ATE before 
and after re-weighting. We rank the drugs by increasing re-weighted 
ATE values. We see that our proposed method successfully corrects 
for most biases in the original data, which results in a decrease in 
the number of unbalanced covariates.

Attention visualization case studies. Having shown that our  
model successfully identified repurposed drug candidates for CAD 
treatment, we further demonstrate the interpretability of our frame-
work achieves via attention mechanism. To exemplify this, we select 
two case drug candidates: diltiazem and fenofibrate. According  
to Table 1, diltiazem and fenofibrate both have beneficial effects  
on CAD disease outcomes. Diltiazem has already been used for 
treating CAD37, while fenofibrate does not have CAD indication on 
its drug label.
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Fig. 2 | Illustration of the deep learning model for predicting treatment 
probability (or propensity score) that we used to correct confounding 
from time sequence data (including diagnoses dt, prescriptions pt and 
demographics bt). It consists of three main components: an embedding 
module, a recurrent neural network (LSTM) and a prediction module.
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We want to identify the covariates that are greatly biased between 
the user and non-user cohorts in original data but balanced after 
re-weighting. The learned attention weights enable visualiza-
tion of each covariate and its SMD values before/after balanc-
ing between the user and non-user cohorts. We select the top 20 
well-balanced (that is, large deviations of SMD during balancing) 
covariates and plot the distribution of SMD values for two case 
drugs in Fig. 4. The original unweighted data are denoted as blue 
dots and LSTM-weighted data as orange dots. The covariates are 
ordered from bottom to top according to the increase of differences 
between SMD values of unweighted data and LSTM-weighted data. 
According to the figure, we see that for both drugs, the SMD val-
ues in the original data are greater than 0.1 (that is, the threshold 
of balancing), which indicates that the original observational data 
is highly biased and many confounding variables exist. The maxi-
mum SMD value is about 0.6 for diltiazem and 0.35 for fenofibrate. 
While the SMD values estimated in the LSTM-weighted data are 
smaller than 0.1, which means no major biases between the user 
and non-user cohorts in terms of selected covariates. The selected 
covariates include demographics (for example, age), co-prescribed 
drugs (metformin, metoprolol and so on) and co-morbidities (for 
example, acute myocardial infarction, cardiac dysrhythmias and so 
on). Correcting for these confounding variables gives a more accu-
rate estimation of the treatment effect on the diseases.

Discussion
In this section, we demonstrate the model performance by compar-
ing our framework with a logistic regression (LR)-based propen-
sity score estimation method, and three existing pre-clinical drug  
repurposing methods. We also explore additional repurposing 
opportunities with drug class, synergistic drug combinations and 
various model parameters, further demonstrating the potential of 
our deep learning framework.

Comparison with an LR-based method. We also developed a base 
version of our model that uses LR for computing propensity score 
and treatment effect estimation. A recent study identifying drug 
repurposing candidates from observational data achieved a good 
performance on a case study of Parkinson’s disease38. They esti-
mated the propensity scores using LR. Thus, we conduct compari-
son experiments using the base model (LR-IPTW) and our model 
(LSTM-IPTW) on the two case drugs above and show the results for 
diltiazem in Extended Data Fig. 2 (the results for fenofibrate can be 
found in Supplementary Fig. 1).

As feature balancing is one of the most important evaluation 
metrics, we first plot the distribution of absolute SMD values com-
puted by LSTM-IPTW and LR-IPTW (Extended Data Fig. 2a,d). 
In both LSTM- and LR-weighted data, many features exhibit 
large absolute SMD values (greater than 0.1) in the original data, 
while most features exhibit low absolute SMD (below 0.1) after 
re-weighting. Specifically, fewer features exhibit absolute SMD val-
ues above 0.1 thresholds after weighting by the LSTM model than 
weighting by the LR model. This indicates that the data is well bal-
anced by LSTM-IPTW and the estimated ATE from LSTM-IPTW 
should be more accurate than LR-IPTW. Extended Data Fig. 2b 
shows the propensity distribution plot over user and non-user 
cohorts using LSTM-IPTW and LR-IPTW models. We observe that 
the propensity distribution of LSTM-IPTW is more smooth (that 
is, the propensities are normally distributed) than the distribution 
of LR-IPTW. Under the LR-IPTW model, many of the patients in 
non-user cohorts are predicted to have a propensity of 0. We also 
evaluated our models using conventional metrics. The receiver 
operating characteristic (ROC) curve is a standard metric widely 
used to estimate the performance of prediction models. The area 
under the ROC curve (AUC) characterizes the accuracy of the pre-
diction results. Extended Data Fig. 2c,f shows the ROC curves for 
the LSTM-IPTW and LR-IPTW models. The ‘propensity’ curves in 
the figures are the standard ROC curves of the LSTM and the LR 
models. By comparing the AUC values of the two models, we see 
that the LSTM model yields more accurate prediction results than 
the LR model. With the accurate treatment predictions, the model 
would generate better weights for balancing and treatment effect 
estimates in the following tasks. Besides the standard ROC curve, 
we also show another two curves: the weighted propensity curve 
and expected curve, which are also leveraged for evaluating causal 
inference algorithms39. The weighted propensity curve is obtained 
by re-weighting the standard ROC curve using weights drawn from 
the propensity model (the same weights applied in covariate bal-
ancing and effect estimates). This curve should be very close to the 
curve that would arise by a random assignment (that is, with an 
AUC close to 0.5), which indicates our assumption that the weight-
ing can emulate an RCT. From the plots, we find that LSTM-IPTW 
performs better than LR-IPTW in terms of being closer to 0.5. 
Compared with the standard propensity ROC curve, the ‘expected’ 
ROC curve duplicates the population and assigns weights to each 
individual based on the propensity. In this setting, each patient con-
tributes their propensity to the true positives and (1 − propensity) 
to the false positives. The standard propensity ROC curve should 
be close to the expected propensity ROC. We observe that the pro-
pensity curve of LSTM-IPTW is much closer to its expected curve 
than LR-ITPW.

Additional experiments on drug class. We further consider 
the drug classes as repurposing candidates to extend the current  
framework, showing that our repurposing framework can also be 
applied to drug class level. We group the drugs into sub-classes 
according to ATC fourth-level (indicating chemical, therapeutic or 
pharmacological sub-group). Then we regard each drug sub-class  
as a repurposing candidate and emulate, for each candidate, an  
RCT to evaluate its treatment effect. The study design remains the 
same as that for individual drugs except that our studied repurpos-
ing candidates are drug classes (ATC fourth level). By applying the 
selection criteria and study design, we obtain 38 (out of 247) eligible 
drug classes.

We plot the distribution of estimated ATE values in Extended 
Data Fig. 3 (the mapping of ATC codes and drug class names is 
shown in Extended Data Fig. 4). Here, we only show the drug classes 
with the balanced user and non-user sub-cohorts after re-weighting 
and statistically significant estimates (adjusted p-value). The results 
of all 38 drug classes can be found in Supplementary Table 5.  
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Fig. 3 | Distribution of estimated ATE of drugs on defined outcomes 
across the 50 bootstrap samples. All shown drugs satisfy two conditions: 
adjusted p-value!≤!0.05 and post-weighting unbalanced ratio!≤!2%. Within 
the boxplot, the central line denotes the median, and the bottom and the 
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All the drug classes are ranked left to right according to the increas-
ing order of estimated ATE values. From the results, we observe that 
12 drug classes yield a beneficial effect on disease outcomes among 
16 selected significant drug classes.

We also compare the results of drug classes to previous results 
based on drug ingredients. We observe that most extracted drug 
classes are consistent with the extracted drug classes in Table 1, 
while some of them are not. For example, three extracted significant 
drug ingredients: rosuvastatin, pravastatin and simvastatin, belong 
to drug class HMG CoA reductase inhibitors (ATC code: C10AA), 
whereas HMG CoA reductase inhibitors is not a significant drug 
class. Also, some drug classes (for example, ’other antidepressants’ 
and “selective serotonin reuptake inhibitors”) show a beneficial 
effect with statistical significance in Extended Data Fig. 4, but the 
drugs that belong to them are not significant nor beneficial to the 
disease in Table 1.

Drug class offers additional information for drug discovery or 
drug repurposing tasks. Considering the drug class helps to uncover 

potential repurposing drug candidates from the drug classes.  
In future work, we will consider the drug class for drug discovery/
repurposing with a more comprehensive analysis.

Additional experiments on drug combinations. We also evalu-
ate the effect of drug combinations on CAD disease progression. 
Similar to the experimental setting of individual drugs, we select 
drug combinations that satisfy the previous cohort definition and 
criteria (that is, the number of minimum patients in a cohort is no 
less than 500, window thresholds, persistent prescription and so 
on). After applying the cohort selection, we obtain seven drug com-
binations: (1) metoprolol and clopidogrel; (2) metoprolol and atorv-
astatin; (3) lisinopril and atorvastatin; (4) lisinopril and clopidogrel; 
(5) metoprolol and lisinopril; (6) clopidogrel and atorvastatin; (7) 
carvedilol and atorvastatin.

We demonstrate the significant drug combinations in Extended 
Data Fig. 5 (the full list of drug combinations can be found in 
Supplementary Table 6). As shown in some drugs are not significant 

Table 1 | The estimated treatment effects for CAD over balanced and statistically significant drug ingredients

Drug name Users Non-users Unbalanced 
covariates (pre)

Unbalanced 
covariates (post)

Covariates Unbalanced 
ratio (post)

ATE (pre) ATE 
(post)

Metoprolol 9,730 29,190 38.308 23.231 1,270 1.8 –0.023 –0.043
Fenofibrate 1,352 4,056 39.340 13.200 1,038 1.3 –0.051 –0.038
Rosuvastatin 2,420 7,260 24.020 9.620 1,097 0.9 –0.063 –0.030
Hydrochlorothiazide 2,001 6,003 32.500 15.320 1,076 1.4 –0.055 –0.029
Amlodipine 4,613 13,839 21.340 8.300 1,180 0.7 –0.050 –0.026
Pravastatin 2,007 6,021 11.260 9.640 1,085 0.9 –0.016 –0.022
Simvastatin 1,605 4,815 10.060 13.240 1,044 1.3 –0.032 –0.020
Valsartan 1,316 3,948 24.940 13.740 1,026 1.3 0.010 –0.015
Diltiazem 1,044 3,132 28.360 13.080 1,007 1.3 –0.010 –0.013
Isosorbide 1,482 4,446 33.320 9.560 1,039 0.9 0.045 0.034
Prasugrel 1,316 3,948 41.500 18.340 1,019 1.8 –0.043 0.036
Ramipril 887 2,661 25.340 14.840 973 1.5 0.020 0.043
Potassium chloride 1,110 3,330 43.460 20.240 1,016 2.0 0.169 0.090
Carvedilol 3,959 11,877 38.280 8.140 1,154 0.7 0.198 0.124
Furosemide 1,545 4,635 50.880 17.080 1,064 1.6 0.301 0.179

Spironolactone 1,292 3,876 70.620 12.920 1,034 1.3 0.393 0.190

Bold denotes ingredients without a known CAD indication (repurposed drug candidates). The drugs are ranked by the estimated ATE values. Pre and post refer to re-weighting.
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Fig. 4 | The SMD values of the top 20 well-balanced covariates. a, Diltiazem results. b, Fenofibrate results. The dashed red lines indicate the threshold of 
balancing.
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when evaluating their effectiveness at the individual level, while they 
are significant when combined with others. For example, lisinopril 
and atorvastatin are not statistically significant as individual treat-
ments, but their drug combination is significant and has a beneficial 
effect on the outcomes. These results illustrate that considering the 
synergies of drug combinations provides further interesting find-
ings of potential repurposing.

Comparison with pre-clinical-based methods. We compare our 
method with three existing pre-clinical drug repurposing meth-
ods40–42 and conduct experiments using CAD as a case study. From 
the literature43,44, we know that drug chemical structures, protein 
targets and chemical–protein interactome (CPI) docking are very 
important for computational pre-clinical drug repurposing meth-
ods. We followed the experimental settings of Gottlieb et al.45 to 
predict drugs for CAD. Specifically, we built an 881-dimensional 
binary vector for chemical structures following Zhang et al.40 and 
Liang et al.41. We built a 1,210-dimensional binary vector for protein 
targets following Zhang et al.40 and Liang et al.41. And we built a 
600-dimensional continuous vector for CPI docking scores follow-
ing Luo et al.42 and Luo et al.4.

For the performance evaluation, we used precision at K 
(precision@K) as our main evaluation metric to see how many 
drugs can be validated among the top-ranked candidates. We chose 
precision@K because given a limited budget, pharmaceutical com-
panies can only evaluate the top-ranked drug candidates instead of 
all existing on-market drugs. As shown in Extended Data Fig. 6, our 
method performs better than the other three pre-clinical methods 
that use CPI docking, drug chemical structures and drug targets 
as features, respectively. Compared with pre-clinical methods, our 
method demonstrates two further advantages: (1) fewer transla-
tional problems9: we use observational data and emulate the process 
of RCTs while they only leverage pre-clinical information; (2) it’s 
more robust: we have strict covariate balancing testing and signifi-
cance testing that guarantee our results are robust and convincing.

Influence of the model parameters to the results. We also study 
the influence of one of our model parameters: adjusted p-value 
to the results. We slightly relax the threshold for adjusted p-value 
from 0.05 to 0.15 (ref. 46) and keep the post-weighting unbalanced 
ratio the same as before. Extended Data Fig. 7 shows the additional 
repurposing candidates retrieved under this parameter setting 
(adjusted p-value is less than 0.15 and the post-weighting unbal-
anced ratio is less than 0.02). As shown in Extended Data Fig. 7, 
four more drugs are retrieved by our framework. Specifically, (1) 
metformin, which is the first-line medication for the treatment of 
type 2 diabetes, and has also been tested for treating CAD in clini-
cal trials47; (2) escitalopram, used to treat major depressive disorder 
or generalized anxiety disorder48, and some studies have started to 
explore the drug repurposing opportunity for CAD49; (3) atorvas-
tatin has already been studied in a clinical trial for evaluating its 
therapeutic effect on CAD50; and (4) losartan has also been included 
in clinical trials51.

By relaxing the adjusted p-value threshold, we have more drug 
candidates (for example, metformin and escitalopram) with diverse 
indications. Our goal is to develop a general computational frame-
work for drug repurposing. For people who want to use our frame-
work, they can easily adjust these parameters according to their 
preference.

This study can be extended in multiple directions in the  
future. For this study, we used hypothesized confounders includ-
ing demographics, co-morbidities and co-prescribed drugs. Some 
other potential confounders such as time elapsed from the first  
disease diagnosis to index date and outcome value calculated over 
the baseline period could be considered to build the model in the 
future work.

In summary, we demonstrate that the proposed computational 
drug repurposing framework can successfully identify drug candi-
dates that have a beneficial effect on disease outcomes but aren’t 
yet indicated for CAD patients. The proposed LSTM-IPTW model 
performs better at correcting biases and estimating treatment 
effects than LR-IPTW, and retaining interpretability for recogniz-
ing important confounding. We also evaluate the therapeutic effect 
of drug combinations, drug-class-level candidates on disease out-
comes and further explore the potential repurposing opportunity 
with different model parameters. Besides, we compare our frame-
work with three existing pre-clinical drug repurposing methods and 
our framework outperforms others.

Methods
In this section, we introduce the study design, which includes definitions of cohorts 
and study variables. Then we illustrate our deep learning model in detail with three 
main components.

Study design. Our framework identifies drug repurposing candidates using 
MarketScan CAD data to emulate a bulk of corresponding RCTs. Below, we 
describe the design of the emulated trials and the key components of our 
framework for CAD drug repurposing.

User and non-user cohorts. Given the drug tested in the trial, a patient is assigned 
to the user cohort if the following inclusion criteria are satisfied: (1) the patient 
has been persistently prescribed the drug (for example, the interval between two 
prescriptions is less than 30 days); (2) the patient is eligible for trial at the time of 
the first prsquocription for the drug (in the CAD study, this condition is that the 
first prescription is after the CAD initiation date); (3) the patient had at least one 
year’s (365 days) history in the database prior to the first prescription of the drug.

Estimating the effect of a drug requires comparing the user cohort to a control 
group assigned with alternative drugs. Once the alternative drugs are determined, 
the non-user cohort is defined by the same inclusion criteria described above—
but with respect to the alternative drugs. To avoid overlap between the user and 
non-user cohorts, the framework further excludes from the non-user cohort any 
patient prescribed with the trial’s drug. In our study design, alternative drugs 
are selected randomly from the prescribed ingredients, excluding the trial drug 
itself. Such a control group directly compares the trial’s drug to drugs of the same 
therapeutic indication, reducing confounding by indication. We use the term 
“index date” to refer to the date of the first prescription of the assigned drug, that 
is, the first time the trial’s drug (respectively, the alternative drug) was prescribed 
for patients in the user (respectively, non-user) cohort.

Baseline and follow-up periods. We refer to the time period prior to the index 
date for which we have information on the patient as the baseline period. We use 
the baseline period for characterizing the patients prior to the beginning of the 
treatment with the assigned drug. The follow-up period starts at the index date, 
that is, at the beginning of the treatment with the trial’s drug in the user cohort, 
and the control drug in the non-user cohort. The effect of the drug is evaluated 
during the follow-up period. In the CAD study, the baseline period is at least 
365 days, and the follow-up period is 2 years (730 days). Extended Data Fig. 8 
demonstrates the definition of user and non-user cohorts.

Outcomes and hypothesized confounders. The effect of the drug during the 
follow-up period is defined with respect to various disease outcomes. In this 
CAD drug repurposing case study, we consulted domain experts to define a set 
of clinically relevant events linked with CAD as the outcome, for example, heart 
failure onset (Supplemental Table 2) and stroke onset (Supplemental Table 3). The 
treatment effect is estimated on these outcomes during the follow-up period (that 
is, 730 days after the index date). The patient is considered to have the disease 
outcome if either of them happens in the follow-up period.

Confounders are variables affecting both treatment assignment of patients and 
an outcome used in the trial, thus creating a ‘backdoor path’ that may hinder the 
true effect of the drug on the outcome. We consult domain experts to compile a 
list of hypothesized confounders for the CAD study, including demographics (for 
example, age at the index date and sex), co-morbidities (for example, indicator per 
each ICD-9/10 diagnosis class) and co-prescribed drugs. Since confounders affect 
treatment assignment, they are computed on the baseline period.

Repurposing drug ingredients. We regard a drug as a repurposing candidate if 
it satisfies the following conditions: (1) contains an active ingredient (that is, 
the ingredient directly involved in achieving the mediation objectives); and (2) 
is persistently prescribed to a large enough number of patients in the disease 
cohort. Specifically, an ingredient is considered as being used by a patient only if 
it was prescribed on two or more distinct dates, as least one month apart. And a 
minimum of 500 patients prescribed a certain ingredient was required. For each 
repurposing candidate, we can compute the user and non-user cohorts according 
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to the above definition of cohorts. After obtaining the corresponding user and 
non-user cohorts, we can extract outcomes and hypothesized confounders for 
each individual patient from the database. Every patient in their sub-cohort 
is represented by a sequence of events, with each event providing the patient 
information (that is, co-morbidities, co-prescribed drugs and so on) that 
corresponds to each visit. The available data within these visits during the baseline 
period, combined with demographic characteristics (that is, age and gender 
collected at CAD initiation date) are used as inputs to the model.

Model. Estimation of ATE. Our proposed framework evaluates the e"ect of a 
certain drug (that is, a trial’s drug) on a clinical outcome with respect to alternative 
treatments. Let α = 1 denote the treatment corresponding to the trial’s drug, 
and α = 0 denote the alternative treatments. We de!ne the ATE of a drug on the 
potential outcome Y as ATE ¼ EðY1Þ $ EðY0Þ, with EðYαÞ denoting the potential 
expected prevalence of patients who would have experienced an outcome event 
during a complete follow-up period if all patients in the trial had been assigned 
with treatment α. #e potential outcomes are referred to as counterfactual as 
only one of these is observed for any given individual. By running RCTs, we can 
measure the outcomes within user and non-user groups into which individuals 
are randomly assigned: EðY1Þ can be directly estimated as EðY jα ¼ 1Þ and EðY0Þ 
as EðY jα ¼ 0Þ. However, in observational data (for example, our MarketScan 
CAD data), treatment assignment is usually far from random, which may depend 
on confounders (a"ecting both treatment assignment and outcome). We need 
to assign weights to the individuals in each group to avoid the in$uence of 
confounders.

In order to control the influence of confounders, we apply IPTW to create a 
pseudo-population from the original one by assigning a weight wα

i  to an individual 
i with treatment α. The weight is defined as the inverse of the conditional 
probability (or propensity score) that an individual is treated with α given the 
confounding values. One common issue with IPTW is that individuals with 
a propensity score very close to 0 will end up with an extremely high weight, 
potentially making the weighted estimator unstable. We address this problem by 
adopting an alternative weighting function called standardized IPTW25, which uses 
the marginal probability of treatment instead of 1 in the weight numerator.

Logistic regression is the most popular method in statistics for estimating 
the propensity score52. In longitudinal observational data, those observational 
covariates are not a set of static feature vectors (one for each patient), but 
irregularly sampled time series (recording diagnoses, medications and so on at 
each timestamp). Thus, logistic regression is not ideal for effectively modelling 
longitudinal observational data.

Model for propensity score weighting. The schematic view of our model is shown 
in Fig. 2, which consists of three main components: an embedding module, a 
recurrent neural network and a prediction module. Briefly, the model estimates the 
propensity score by first transforming the input features using an embedding layer. 
These embedded features are then fed into LSTM, the output of which at every 
time point is aggregated through an attention layer for automatically focusing on 
important time points. The aggregated features are fed into a prediction module 
that provides the probability of receiving treatment. Each of these is discussed 
below in detail.

Embedding module. The embedding module is to convert the initial high- 
dimensional and sparse input features into a lower-dimensional and continuous 
data representation, which is beneficial to the following prediction task. As shown 
in Fig. 2, the input features consist of three components: diagnosis, prescription 
and demographic information (age and gender). The diagnosis codes for each 
patient at each timestamp can be denoted as {d1, d2, . . . , dt}, and prescription can be 
denoted as {p1, p2, . . . , pt}. Here, dt and pt are both one dimensional binary vectors 
with the size of diagnosis code dictionary (r) and prescription code dictionary (s), 
respectively. For each element in the vector, the value in the j-th column indicates 
that code j is documented in the t-th visit. We use two linear embedding modules to 
represent diagnosis and prescription respectively. That is, we define et ¼ Wd

embdt, 
f t ¼ Wp

embpt, where et 2 Rm denotes the embedding of the input vector dt 2 Rr, 
m is the size of the diagnosis embedding dimension, and Wd

emb 2 Rm´ r is the 
embedding matrix. f t 2 Rn denotes the embedding of the input vector pt 2 Rs, n is 
the size of the diagnosis embedding dimension, and Wp

emb 2 Rn ´ s is the embedding 
matrix. The age is normalized into a range of [0, 1] using min–max normalization 
and the gender is represented as a binary vector. Having the embedded vectors of 
patients, we input them to LSTM.

Recurrent neural network and attention mechanism. LSTM15, which is a kind of 
recurrent neural network equipped with memory cells, can better model the 
temporality of observational data. A common LSTM unit contains a cell, an input 
gate, an output gate and a forget gate. The cell can remember values over irregular 
time intervals and the three gates moderate the flow of information into and out 
of the cell. The inputs to the LSTM are embedded confounding vectors from the 
embedding module and the output of which is the patient’s latent health status 
at the time of visit. We use two LSTMs, LSTMα and LSTMβ to separately model 
diagnosis and prescription codes of patients.

h1;h2; :::; ht ¼ LSTMαðe1; e2; :::; etÞ
g1; g2; :::; gt ¼ LSTMβðf1; f2; :::; f tÞ

ð3Þ

where ht 2 Ru, gt 2 Rv are hidden state vectors at t-th visit, and u and v denote 
the size of hidden layer of LSTMα and LSTMβ. Then those patient hidden states 
are aggregated through two separate attention layers for automatically focusing on 
important visits.

αi ¼ Softmax ðW>
α hi þ bαÞ; for i ¼ 1; 2:::; t

cα ¼
Pt

i¼1 αihi
βi ¼ Softmax ðW>

β gi þ bβÞ; for i ¼ 1; 2:::; t

cβ ¼
Pt

i¼1 βigi

ð4Þ

where Wα 2 Ru, bα 2 Ru, Wβ 2 Rv and bβ 2 Rv are the parameters to learn. 
Using the generated attention weights for diagnosis and prescription, we obtain 
the aggregated vectors cα 2 Ru and cβ 2 Rv as defined in equation (4). Then we 
combine cα, cβ with vectorized age and gender to predict the probability of receiving 
a treatment (propensity score).

Prediction module. The aggregated patient states from attention layer cα, cβ, 
combined with the demographic features cdemo, are passed through a fully connected 
neural network to predict the probability of receiving a treatment as follows,

ŷ ¼ Sigmoid ðW>ct þ bÞ ð5Þ

where ct = ReLu(Wc[cα,cβ,cdemo] + bc), Wc 2 Rk´ ðuþvþ2Þ, bc 2 Rk, W 2 Rk, b 2 R 
are the model parameters. We use cross-entropy to calculate the prediction loss as 
follows,

L ¼ $ 1
N

XN

i¼1
ðyilog ŷi þ ð1$ yiÞlog ð1$ ŷiÞÞ ð6Þ

where yi is the ground truth of observed treatment for patient i.

Experiment settings. The model is implemented and trained with Python 3.6 and 
PyTorch 1.4 (https://pytorch.org/), on a high-performance computing cluster 
with four NVIDIA TITAN RTX 6000 GPUs. For each drug candidate, we train a 
model using the adaptive moment estimation (Adam) algorithm with a batch size 
of 50 subjects and a learning rate of 0.001. We run each model for 50 iterations for 
computing p-values and confidence intervals. We randomly split the input data 
into training, validation and test sets with a ratio of 70:10:20. The information from 
a given patient is only present in one set. The training set is to train the proposed 
models. The validation set is used to improve the models and select the best model 
hyperparameters.

Data availability
The data we use is MarketScan Commercial Claims and Encounters (CCAE, more 
than 100 million patients, from 2012 to 2017) The details of source data structure 
and prepossessed input data demo are available at the Github repository https://
github.com/ruoqi-liu/DeepIPW. Access to the MarketScan data analysed in this 
manuscript is provided by the Ohio State University. The dataset is available from 
IBM at https://www.ibm.com/products/marketscan-research-databases.

Code availability
The source code for this paper can be downloaded from the Github repository at 
https://github.com/ruoqi-liu/DeepIPWor the Zenodo repository at https://doi.
org/10.5281/zenodo.4079391.
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Extended Data Fig. 1 | CAD cohorts characteristics. a, The patients’ distribution of total time in the database. b, The patient’s distribution of time  
before/after CAD initiation date. c, The growth of the number of patients developing outcomes after CAD initiation date. d, The gender distribution with  
age at CAD initiation date.
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Extended Data Fig. 2 | Performance comparison of LSTM-IPTW and LR-IPTW using drug candidate: diltiazem (with known CAD indication). The 
three figures on the top are results obtained from LSTM-IPTW, while the figures on the bottom are from LR-IPTW. a, and (d) The absolute SMD of each 
covariate in the original data (orange triangles) and in the weighted data (blue circles). b, and (e) The distribution of estimated propensity scores over 
user (orange area) and non-user (blue area) cohorts. c, and (f) The ROC curves for the propensity model (orange), expected value (green) and weighted 
propensity (blue).
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Extended Data Fig. 3 | Distribution of estimated ATE of drug classes on defined outcomes across the 50 bootstrap samples. All these showing drug 
classes satisfy two conditions: adjusted p-value less than 0.05 and post unbalanced ratio less than 2%. Within the boxplot, the central line denotes 
the median, and the bottom and the top edges denote the 25th(Q1) and 75th(Q3) and percentiles respectively. The whiskers extend to 1.5 times the 
interquartile range.
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Extended Data Fig. 4 | The list of significant drug classes. The drug classes are denoted using ATC code and corresponding names.
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Extended Data Fig. 5 | The estimated treatment effects for CAD over balanced and statistically significant drug combinations. The drug combinations 
are ranked by the estimated ATE values.
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Extended Data Fig. 6 | Performance comparison of proposed method and three pre-clinical methods evaluated by Precision@K. The values of K are 
selected from {6, 9}.
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Extended Data Fig. 7 | Retrieved additional repurposing candidates under different thresholds’ setting. The adjusted p-value is changed to 0.15 and the 
post unbalanced ratio remains the same as previous setting (less than 2%).
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Extended Data Fig. 8 | The definition of user and non-user cohorts. Index date refers to the first prescription of the trial’s drug (user cohort) or the 
alternative drug (non-user cohort). The time period before the index date is the baseline period, and the time after the index date is the follow-up period. 
The patient covariates are collected during the baseline period and the treatment effects areevaluated at the follow-up period.
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Supplemental Table 1. The definition of coronary artery disease (CAD) from observational health data. 
PMID 16159046, 26524702, 28008010 
Criteria • A history of coronary revascularization in the EHR 

• Or, history of acute coronary syndrome, ischemic heart disease, or exertional 
angina 

Diagnostic codes ICD-9 codes: 
410* to 414* 
 
ICD-10 codes: 
The best approximation are the following codes: 
I20*  Angina pectoris 
I21*  Acute myocardial infarction 
I22*  Subsequent ST elevation (STEMI) and non-ST elevation (NSTEMI) myocardial 
infarction 
I23*  Certain current complications following ST elevation (STEMI) and non-ST 
elevation (NSTEMI) myocardial infarction (within the 28 day period) 
I24*  Other acute ischemic heart diseases 
I25*  Chronic ischemic heart disease 
 

 
 
Supplemental Table 2. The definition of heart failure from observational health data. 

PMID 26524702, 26687987, 21156884, 15606986 
Criteria Any one of the following: 

1.  (ICD-9) billing code 
2.  (ICPC-2-R) diagnosis code 
3. “CHF” on the patient’s problem list (free text or ICD-9) 

Diagnostic codes ICD-9 codes: 
402.01, 402.11, 402.91, 428.xx 
 
OR: 
402.01 Hypertensive heart disease, malignant with CHF 
402.11 Hypertensive heart disease, benign with CHF 
402.91 Hypertensive heart disease, NOS with CHF 
404.01 Hypertensive heart/renal disease, malignant with CHF 
404.03 Hypertensive heart/renal disease, malignant with CHF + renal failure 
404.11 Hypertensive heart/renal disease, benign with CHF 0 (0) 
404.13 Hypertensive heart/renal disease, benign with CHF + renal failure 
404.91 Hypertensive heart/renal disease, NOS with CHF 
404.93 Hypertensive heart/renal disease, NOS with CHF + renal failure 
425.xx Cardiomyopathy 
428.xx Heart failure 
 
ICD-10 codes: 
I11 
I13 
I50 
I42 
 
 
ICPC-2-R code: 
K77 

 
 



Supplemental Table 3. The definition of stroke from observational health data. 
PMID 29202795 

Diagnostic codes 
 

ICD-9 codes: 
V12.54, 
438.0–438.9 
 
ICD 10 codes: 
Z86.73 
I60-I69 
subarachnoid hemorrhage (I60); 
intracerebral hemorrhage (I61); 
cerebral infarction (I63); 
and other transient cerebral ischemic attacks and related syndromes and 
transient cerebral ischemic attack (unspecified) (G458 and G459), 

 
 
 
Supplemental Table 4. Main results for all 55 repurposing drugs. 

Drug name # User # Non-user 
Pre.unbalanced 

covariates 
Post.unbalanced 

covariates 
# 

Covariates 
Post.unbalanced 

ratio 
Pre. 
ATE 

Post. 
ATE 

atorvastatin 13099 39297 16.560 26.200 1300 0.020 -0.029 -0.050 

metoprolol 9730 29190 38.308 23.231 1270 0.018 -0.023 -0.043 

fenofibrate 1352 4056 39.340 13.200 1038 0.013 -0.051 -0.038 

rosuvastatin 2420 7260 24.020 9.620 1097 0.009 -0.063 -0.030 

hydrochlorothiazide 2001 6003 32.500 15.320 1076 0.014 -0.055 -0.029 

amlodipine 4613 13839 21.340 8.300 1180 0.007 -0.050 -0.026 

pravastatin 2007 6021 11.260 9.640 1085 0.009 -0.016 -0.022 

simvastatin 1605 4815 10.060 13.240 1044 0.013 -0.032 -0.020 

lisinopril 5876 17628 17.960 25.000 1200 0.021 -0.002 -0.020 

valsartan 1316 3948 24.940 13.740 1026 0.013 0.010 -0.015 

diltiazem 1044 3132 28.360 13.080 1007 0.013 -0.010 -0.013 

omeprazole 1916 5748 31.080 15.220 1084 0.014 -0.052 -0.011 

losartan 4822 14466 22.680 7.720 1187 0.006 -0.015 -0.007 

fluoxetine 505 1515 104.500 46.240 932 0.050 -0.064 -0.005 

atenolol 845 2535 42.460 22.460 974 0.023 -0.082 -0.005 

metformin 3258 9774 29.700 15.300 1131 0.014 -0.052 -0.004 

nebivolol 713 2139 49.960 28.500 958 0.030 -0.083 -0.003 

clopidogrel 6488 19464 27.700 7.340 1212 0.006 -0.014 0.013 

levothyroxine 2637 7911 39.520 9.380 1131 0.008 -0.034 0.014 

escitalopram 1123 3369 56.040 15.460 1025 0.015 -0.036 0.016 

gabapentin 1117 3351 74.800 23.220 1041 0.022 0.002 0.016 

pantoprazole 2508 7524 21.100 9.780 1114 0.009 0.005 0.019 

sertraline 932 2796 60.980 24.140 1013 0.024 -0.036 0.021 



benazepril 566 1698 55.120 44.620 907 0.049 -0.068 0.025 

bupropion 779 2337 77.920 29.900 979 0.031 -0.050 0.026 

aspirin 709 2127 35.260 31.600 952 0.033 -0.010 0.030 

isosorbide 1482 4446 33.320 9.560 1039 0.009 0.045 0.034 

prasugrel 1316 3948 41.500 18.340 1019 0.018 -0.043 0.036 

trazodone 527 1581 128.580 53.440 947 0.057 -0.006 0.039 

ramipril 887 2661 25.340 14.840 973 0.015 0.020 0.043 

olmesartan 571 1713 73.260 45.400 933 0.049 -0.075 0.047 

citalopram 672 2016 56.420 30.440 960 0.032 -0.041 0.060 

duloxetine 932 2796 116.300 20.900 1011 0.021 -0.043 0.068 

canagliflozin 960 2880 98.900 50.040 993 0.050 -0.053 0.073 

potassium chloride 1110 3330 43.460 20.240 1016 0.020 0.169 0.090 

ezetimibe 938 2814 67.900 21.220 992 0.021 -0.049 0.090 

glipizide 675 2025 63.000 45.240 945 0.048 0.003 0.095 

zolpidem 550 1650 88.840 41.940 927 0.045 -0.015 0.106 

esomeprazole 446 1338 101.660 57.560 903 0.064 -0.072 0.108 

glimepiride 789 2367 70.820 38.380 979 0.039 -0.034 0.112 

venlafaxine 606 1818 113.980 58.320 953 0.061 -0.055 0.116 

carvedilol 3959 11877 38.280 8.140 1154 0.007 0.198 0.124 

ranolazine 587 1761 54.780 42.040 927 0.045 0.036 0.134 

sitagliptin 1104 3312 55.400 25.940 1013 0.026 -0.044 0.155 

ticagrelor 905 2715 45.360 29.160 979 0.030 -0.002 0.162 

furosemide 1545 4635 50.880 17.080 1064 0.016 0.301 0.179 

montelukast 908 2724 82.480 27.400 996 0.027 -0.022 0.181 

spironolactone 1292 3876 70.620 12.920 1034 0.013 0.393 0.190 

allopurinol 865 2595 84.520 26.580 976 0.027 0.025 0.197 

alprazolam 492 1476 110.960 49.180 907 0.054 0.006 0.204 

oxycodone 575 1725 127.480 50.980 947 0.054 -0.001 0.289 

tamsulosin 1137 3411 66.140 27.060 1026 0.026 0.006 0.311 

apixaban 710 2130 81.040 41.380 963 0.043 0.168 0.332 

rivaroxaban 945 2835 79.080 29.400 1002 0.029 0.102 0.392 

warfarin 685 2055 95.760 34.720 952 0.036 0.234 0.540 
 
 
 
Supplemental Table 5. Main results for all 38 repurposing drug classes. 

Drug name # User # Non-user Pre.unbalanced 
covariates 

Post.unbalanced 
covariates 

# 
Covariates 

Post.unbalanced 
ratio 

Pre. 
ATE 

Post. 
ATE 

A02BA 655 1965 49.450 10.500 557 0.019 -0.025 -0.028 

A02BC 3812 10775 19.500 5.300 611 0.009 -0.033 -0.040 



A10AE 597 1791 82.150 22.700 545 0.042 0.024 -0.024 

A10BA 3252 9756 32.000 14.650 604 0.024 -0.065 -0.086 

A10BB 1373 4119 47.700 17.550 575 0.030 -0.016 -0.056 

A10BH 1358 4074 57.550 29.850 573 0.052 -0.039 -0.091 

A10BJ 735 2205 78.050 24.200 552 0.044 -0.030 -0.051 

A10BK 1712 5136 77.700 30.400 584 0.052 -0.039 -0.075 

A11CC 543 1629 79.600 13.050 556 0.024 0.030 -0.030 

A12BA 1150 3450 40.700 6.500 578 0.011 0.153 0.061 

B01AA 677 1596 80.400 22.450 551 0.041 0.197 0.083 

B01AC 8451 24429 19.100 4.900 632 0.008 -0.017 -0.030 

B01AF 1619 4857 61.200 24.650 586 0.042 0.115 -0.021 

C01DA 1535 4605 37.600 4.900 581 0.008 0.053 0.011 

C01EB 537 1611 61.600 12.150 532 0.023 0.019 -0.008 

C03AA 1989 5967 37.250 9.250 591 0.016 -0.078 -0.075 

C03CA 1601 4803 48.200 6.350 588 0.011 0.293 0.128 

C03DA 1395 4185 61.150 7.350 577 0.013 0.384 0.151 

C05AE 1040 3120 44.150 8.300 569 0.015 -0.011 -0.023 

C07AA 657 1971 63.800 11.850 549 0.022 0.053 -0.010 

C07AB 10359 28354 16.368 7.000 636 0.011 -0.039 -0.053 

C07AG 4040 12120 23.850 4.250 611 0.007 0.187 0.056 

C08CA 4801 14403 19.300 5.450 624 0.009 -0.041 -0.063 

C09AA 7016 21048 15.650 10.650 629 0.017 -0.007 -0.047 

C09CA 5895 17685 14.050 5.200 628 0.008 -0.016 -0.036 

C10AA 11730 30838 29.600 15.150 641 0.024 -0.026 -0.064 

C10AB 1412 4236 38.350 8.950 572 0.016 -0.047 -0.059 

C10AX 979 2937 61.100 12.250 566 0.022 -0.043 -0.049 

G04CA 1326 3978 56.800 25.100 580 0.043 -0.019 -0.062 

H03AA 2641 7923 42.550 13.200 605 0.022 -0.043 -0.055 

M04AA 949 2847 69.550 14.550 558 0.026 0.016 -0.029 

N02AA 607 1821 99.800 24.250 553 0.044 -0.040 -0.061 

N03AX 1719 5157 69.750 12.450 593 0.021 0.014 -0.032 

N05BA 621 1863 86.350 13.400 549 0.024 -0.025 -0.013 

N05CF 598 1794 70.500 10.300 550 0.019 -0.026 -0.036 

N06AB 2793 8379 41.700 8.300 612 0.014 -0.045 -0.053 

N06AX 2279 6837 65.450 11.350 601 0.019 -0.054 -0.066 

R03DC 899 2697 65.250 11.300 563 0.020 -0.035 -0.034 

 
 
 



Supplemental Table 6. Main results for all 7 repurposing drug combinations. 
Drug name  # User # Non-user 

Post unbalanced 
ratio 

Pre.ATE Post.ATE 
Adjusted  
P-value 

Metoprolol + Clopidogrel 1237 3711 0.010 -0.034 -0.028 < 0.05 

Metoprolol + Atorvastatin 2158 6474 0.014 -0.045 -0.024 < 0.05 

Lisinopril + Atorvastatin 1145 3435 0.015 -0.002 -0.018 < 0.05 

Lisinopril + Clopidogrel 630 1890 0.013 -0.018 -0.012 > 0.1 

Metoprolol + Lisinopril 962 2886 0.011 -0.028 -0.012 > 0.1 

Clopidogrel + Atorvastatin 1477 4431 0.007 -0.019 0.008 > 0.1 

Carvedilol + Atorvastatin 860 2580 0.011 0.124 0.112 < 0.05 

 
 

 
 
 

(a) (b) (c) 

(d) (e) 

Figure 2. Illustration of the definition of user and non-user cohorts 

Supplemental Figure 1. Performance comparison of LSTM-IPTW and LR-IPTW on case drug: 
fenofibrate (without known CAD indication). The three figures on the top are results obtained from 
LSTM-IPTW, and the figures on the bottom are from LR-IPTW. Figure (a) and Figure (d) show the 
absolute SMD of each covariate in the original data (orange triangles) and in the weighted data (blue 
circles). Figure (b) and Figure (e) show the distribution of estimated propensity scores over user (orange 
area) and non-user (blue area) cohorts. Figure (c) and Figure (f) show the ROC curves for the propensity 
model (orange), expected value (green) and weighted propensity (blue). 

(f) 



 
 
 

Supplemental Figure 2. Flowchart of 
data collection and study process of 
identifying repurposed drug candidates  


