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Figure 1: CardioAI: a multimodal AI system to support clinicians for remote monitoring and risk detection of cancer patients’ 
cardiotoxicity risk. The UI has five modules: (A) Patient Information; (B) AI-generated Daily Summary; (C) Wearable Sensor 
Data; (D) AI-generated and Explainable Risk Score; (E) Conversation Log. 
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Abstract 
Despite recent advances in cancer treatments that prolong patients’ 
lives, treatment-induced cardiotoxicity (i.e., the various heart dam-
ages caused by cancer treatments) emerges as one major side effect. 
The clinical decision-making process of cardiotoxicity is challeng-
ing, as early symptoms may happen in non-clinical settings and 
are too subtle to be noticed until life-threatening events occur at a 
later stage; clinicians already have a high workload focusing on the 
cancer treatment, no additional effort to spare on the cardiotoxicity 
side effect. Our project starts with a participatory design study with 
11 clinicians to understand their decision-making practices and 
their feedback on an initial design of an AI-based decision-support 
system. Based on their feedback, we then propose a multimodal 
AI system, CardioAI, that can integrate wearables data and voice 
assistant data to model a patient’s cardiotoxicity risk to support 
clinicians’ decision-making. We conclude our paper with a small-
scale heuristic evaluation with four experts and the discussion of 
future design considerations. 

CCS Concepts 
• Human-centered computing → Human computer interac-
tion (HCI); • Applied computing → Health informatics. 

Keywords 
Human-AI collaboration, Cancer treatment-induced cardiotoxicity, 
Multimodal AI system, Large Language Models 
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1 Introduction 
Cancer treatments, such as chemotherapy, have seen remarkable 
advancements over the past few decades, leading to significantly 
improved survival rates across various types of cancer (e.g., breast 
cancer and sarcoma) [9, 47, 49, 81, 86, 99, 105]. For example, thanks 
to advancements in chemotherapy regimens, 5-year survival rates 
of breast cancer patients have improved from 82.7% to 91% [106]. 
However, advanced cancer treatments still have adverse effects (e.g., 
liver and kidney damage), with treatment-induced cardiotox-
icity standing out as one of the most severe issues [33, 89, 98]. 
Treatment-induced cardiotoxicity refers to the various heart dam-
age caused by cancer treatments, which can lead to minor or severe 
consequences such as heart failure, arrhythmia, and other cardio-
vascular diseases [3, 6]. To put this into the breast cancer treatment 
context, cardiotoxicity has emerged as the leading cause of morbid-
ity and mortality in long-term follow-up [45]. 

Recent studies have investigated early decision-making of treatment-
induced cardiotoxicity [23, 26]. However, this is challenging due to 
the following four reasons. First, the initial symptoms of cardiotox-
icity are often subtle in the early stages, and often, by the time clin-
icians are able to identify by obvious symptoms, cardiotoxicity has 

already caused irreversible damage [52, 62] (Challenge 1). Second, 
symptoms can manifest outside clinical settings, where patient-
clinician interactions are significantly reduced, causing symptoms 
to go unnoticed or be diagnosed late [44] (Challenge 2). Third, the 
current healthcare system heavily relies on patient self-reporting 
for symptom tracking outside the hospital, but patients may falsely 
report and have poor compliance due to lack of health literacy 
and forgetfulness [17, 18, 76] (Challenge 3). Lastly, clinicians face 
high workload and pressure, which limits their capacity to process 
massive amounts of clinical information in a short period of time 
necessary for early cardiotoxicity detection [26, 31] (Challenge 
4). While these challenges have been previously identified, their 
specific impact on clinicians’ decision-making processes remains 
underexplored. Without addressing these challenges, the identifi-
cation of cancer treatment-induced cardiotoxicity is very difficult 
and often delayed, which could lead to belated disease intervention, 
and significantly impact overall patient outcome [109]. 

To mitigate these challenges, we aim to develop an AI-based sys-
tem to support clinicians’ early decision-making of cancer treatment-
induced cardiotoxicity. Two groups of literature are particularly 
inspiring: Remote Patient Monitoring (RPM) [14, 70, 116] and 
AI-based Clinical Decision Support Systems (AI-CDSS) [104]. 
RPM uses technologies (e.g., wearable devices or home sensors) 
to continuously collect patient health data (e.g., blood pressure) 
outside of clinical settings [19, 72], which could be a promising 
solution to cope with the aforementioned challenges of monitor-
ing non-clinical subtle early symptom data (Response to Chal-
lenge 1 & 2). Furthermore, recent HCI research has shown the 
potential of using LLM-based voice assistants (LLM-VA) as verbal 
communication interfaces to support patients to self-report symp-
toms [61, 64, 112, 117], which can be a powerful complement to 
traditional self-reporting approaches for our user case (Response 
to Challenge 3). With all the multimodal data continuously col-
lected via RPM and LLM-VA, it may pose an additional cognitive 
demand on the already high-workload clinician decision makers; 
that is where AI-CDSS may help by automatically organizing and 
analyzing the raw data, and presenting only a high-level risk pre-
diction to the clinicians [22] (Response to Challenge 4). 

One key issue of designing a successful AI-CDSS is that the AI 
needs to be explainable and trustworthy to clinicians, and it should 
integrate into their existing workflow. Some existing HCI litera-
ture [2, 78, 115] exemplified the best practices such as following the 
human-centered AI (HCAI) principles in design [4] and engaging 
stakeholders throughout the design process [104, 115], which in-
spired our methodology. In this paper, we propose a first-of-its-kind 
multimodal AI-based system that combines the strengths of RPM 
(continuous monitoring multimodal symptom data via wearables 
and a LLM-VA to address Challenge 1, 2, and 3) and explainable 
AI-CDSS (designed to mitigate Challenge 4 by offering a model-
based predictive risk score and explanation generation). The design 
process also follows HCAI design principles [4]. In particular, our 
work aims to answer two research questions: 

• RQ1: How do clinicians’ experiences provide deeper insights 
into the challenges of early decision-making for cancer treatment-
induced cardiotoxicity, and what technological design needs 
do they have? 

https://doi.org/10.1145/3706598.3714272
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• RQ2: How will clinicians perceive and interact with our ini-
tial design of a multimodal AI-based system in early decision-
making of cancer treatment-induced cardiotoxicity? 

From RQ1, we aim to gather clinicians’ challenges and tech-
nological needs in today’s decision-making workflow for cancer 
treatment-induced cardiotoxicity. To answer RQ1, we conducted 
participatory design (PD) sessions with 11 clinicians, fostering in-
depth discussions and actively involving them in the co-design 
process. During each session (Figure 2), we presented an initial 
design sketch to gather feedback and suggestions. Through this 
collaborative and iterative process, we developed our pilot system, 
CardioAI, which is detailed in Section 4. CardioAI offers two main 
functionalities: (1) Symptom Monitoring: vital signs collected 
from wearables (Module C in Figure 1) and qualitative symptoms 
self-reported via an LLM-VA (Module E); (2) Risk Prediction and 
Summarization: AI-generated predictive risk scores for cardiotox-
icity paired with explanations as feature importance (Module D) 
and summarizations of the collected data (Module B). 

Lastly, to address RQ2, we conducted a heuristic evaluation with 
four clinicians, including two cardiologists and two oncologists, 
to gather feedback on the usability and functionality of our pi-
lot system. Data were collected through cognitive walkthroughs 
and think-aloud protocols during clinicians’ interactions with the 
system, along with post-study interviews and usability surveys. 
Clinicians highlighted the system’s ability to provide additional 
cardiotoxicity-specific patient data for monitoring and diagnosis, 
reduce cognitive workload, and support proactive decision-making 
within their existing workflows. 

In summary, our contributions are as follows: 
• Following the human-centered design principles and prac-
tices, we co-designed with clinicians a multimodal AI-based 
pilot system that integrates continuous symptom monitoring 
and explainable AI model to support early decision-making 
of cancer treatment-induced cardiotoxicity. 

• Through a follow-up user evaluation of our prototype, we 
identified key design considerations for future implementa-
tions of multimodal AI-based systems in clinical settings. 

2 Related Work 

2.1 Challenges in Cancer Treatment-Induced 
Cardiotoxicity 

Despite the survival rate of cancer patients has improved signifi-
cantly due to advances in cancer treatment development, new con-
cerns and risks emerge alongside them, such that treatment-induced 
cardiotoxicity is a particular complication that has aroused more 
and more attention [71, 84, 84]. Treatment-induced cardiotoxicity 
represents damage to the cardiovascular system, such as heart fail-
ure [46, 85], caused by cancer treatments, which poses serious risks 
to patients’ well-being during and after cancer treatment [37, 52]. 
Cardiotoxicity induced by anthracyclines, in particular, can lead to a 
two-year mortality rate of up to 60% [83, 95, 102] The development 
of cardiotoxicity can also lead to interruption of cancer treatment 
if the vital organs of the patients cannot endure the side effects of 
subsequent cancer treatment [62]. Thus, monitoring cardiotoxic-
ity at an early stage is crucial, as patients can benefit from early 

diagnosis and intervention for cardiotoxicity to reduce the risk of 
dangerous negative effects [17, 18, 76]. 

However, detecting early signals of treatment-induced cardiotox-
icity for timely intervention is a significant challenge in the health-
care field [16, 52]. One major issue is that initial cardiac symp-
toms are often very mild, leading to delayed self-reporting from 
patients [53, 66, 108] (Challenge 1). When more pronounced symp-
toms (e.g., edema) appear, the condition may have already pro-
gressed to an irreversible state [52, 62]. This delay hinders clin-
icians’ ability to diagnose cardiotoxicity early during and after 
cancer treatment [52]. Additionally, treatment-induced cardiotoxic-
ity can manifest at varying times—during treatment, shortly after, 
or even years later [76]. This variability makes consistent moni-
toring challenging, especially when symptoms arise outside the 
hospital setting [91] (Challenge 2). The reliance on patient self-
reporting is another critical challenge. Patients may underreport 
or misreport symptoms due to forgetfulness, misunderstanding, 
or downplaying their discomfort [17, 18, 76]. This underreporting 
can lead to missed early signs of cardiotoxicity, delaying necessary 
interventions (Challenge 3). 

Furthermore, clinicians are frequently tasked with the demand-
ing responsibility of overseeing cancer treatments [26, 31], leaving 
them with little capacity to rapidly gather and analyze extensive 
clinical data, which is an essential step for the early detection of 
cardiotoxicity [109] (Challenge 4). There is also a lack of standard-
ized guidelines for clinicians to detect and intervene in treatment-
induced cardiotoxicity effectively [69, 97], which exacerbates the 
difficulty in early detection and consistent management across 
healthcare providers. Due to these compounded challenges, there is 
a high demand for novel approaches that offer effective and efficient 
monitoring and diagnosis of treatment-induced cardiotoxicity [37]. 

2.2 Remote patient monitoring for Cancer Care 
Remote patient monitoring (RPM) involves leveraging digital tech-
nologies to collect health data from patients outside clinical settings 
and transmit this information to healthcare providers for evalua-
tion [19, 72]. In cancer care, RPM has greatly improved clinicians’ 
ability to monitor and manage patient health, providing a cost-
effective solution [56, 101]. Such improvement is driven by the 
integration of telehealth systems [43]. Telehealth systems, includ-
ing the use of technology-driven platforms to provide different 
types of health-related information and services [67], have facili-
tated cancer patients’ access to healthcare consultations and per-
sonalized coaching, boosting patient engagement and adherence 
to treatment protocols [21, 24, 59]. Patients can self-administer 
their telehealth systems, and data can be recorded and transmitted 
to clinicians remotely using a mobile phone [29, 40]. For instance, 
wearable telehealth systems [28, 88] are increasingly adopted in clin-
ical settings to provide continuous real-time monitoring of patients’ 
physiological data, offering more accuracy than self-reported symp-
toms [5, 39, 41]. For example, fitness trackers and smartwatches 
can monitor vital signs that are critical for the early detection of 
cardiotoxicity, such as heart rate, physical activity levels, sleep pat-
terns, oxygen saturation, and respiratory rates, which can offer a 
thorough understanding of patients’ health status [41, 96]. 

While these telehealth systems have shown effectiveness in mon-
itoring specific aspects of cancer patient health conditions remotely, 
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they only focus on collecting physiological data that can be cap-
tured by sensors. In contrast, nurse practitioners make regular 
phone calls after cancer treatment to collect patients’ self-reported 
feelings, and nurses can ask follow-up questions to correspond to 
patients’ feedback to better understand their well-being. Natural 
language communication between nurses and patients comprises 
rich information regarding the patient’s physiological wellness 
that cannot be captured by existing sensor-based telehealth sys-
tems [80]. Thus, increasing research attention has been focused on 
the development of telehealth systems with verbal communication 
interfaces, such as conversational agents, that support gathering 
self-reported patient health data, such as daily well-being status 
for cancer care [55, 59]. For instance, the Nurse AMIE project uses 
smart speakers to deliver mental and informational care interven-
tions to women with metastatic breast cancer [79]; Gregory et al. 
[38] designed a mobile health prototype to track the cardiac symp-
toms of cancer patients using questionnaires. Researchers have also 
developed conversational agents for a number of clinical inquiries 
of cancer patients, including clinical diagnosis, patient education, 
and symptom monitoring [54, 61, 110, 113, 117]. 

A thorough understanding of cancer patients’ well-being outside 
the clinical setting is particularly crucial for the monitoring and 
diagnosis of treatment-induced cardiotoxicity because of its vari-
ability in onset and high-stake nature. In particular, physiological 
data collected via wearable devices can provide real-time insight 
into subtle changes in cardiac function that might go unnoticed by 
the patient, whereas telehealth systems with verbal communication 
interfaces can capture rich health information in natural language 
self-reflections by patients. In this work, we propose an AI-based 
system to collect multimodal data with the help of wearable devices 
and voice assistants to address the needs for early monitoring and 
identification of treatment-induced cardiotoxicity [90, 91]. 

2.3 Design of AI-Supported Clinical Decision 
Support Systems 

Recent advances in AI predictive modeling shed light on a broad 
avenue for supporting clinicians’ clinical decision-making with 
accessible and efficient AI assistance [115]. Such technical advance-
ment, in turn, led to a growing research interest from HCI experts 
and healthcare practitioners in the design of AI-CDSS [1, 20, 22, 
57, 58, 111]. AI-CDSS systems can greatly improve the efficiency 
of clinicians’ clinical workflow, where clinicians have to process 
a large amount of complicated electronic health records (EHRs) 
data to make informed clinical decisions [32, 34, 93, 94]. However, 
traditional AI-CDSS approaches rely on clinical results for risk 
prediction or serve only general-purpose communication while 
facing reliability, accuracy, or privacy concerns in AI applications 
in healthcare care [1, 20, 58]. 

Specifically, in the context of treatment-induced cardiotoxicity, 
AI has the potential to facilitate clinicians in making more accurate 
diagnoses and, ultimately, in providing appropriate therapeutic 
interventions [68, 114]. For example, Chang et al. [20] trained AI 
with clinical, chemotherapy, and echocardiographic parameters 
to predict cancer treatment-induced cardiac dysfunction (CTRCD) 

and heart failure, reaching higher accuracy than traditional predic-
tion models; Yagi et al. [111]’s model robustly stratified CTRCD 
risk from baseline electrocardiograms (ECG). However, current 
AI-CDSS solutions for cardiotoxicity detection face several limita-
tions. One key limitation is that these models often rely on EHR 
data collected during infrequent clinical visits, resulting in incom-
plete and limited datasets that may miss subtle, early indicators of 
cardiotoxicity [78], which hinders the development of accurate pre-
dictive models. Furthermore, existing AI systems lack integration 
with the principles of HCAI, which hampers their effectiveness in 
real-world healthcare settings [115]. For example, they often do 
not fit seamlessly into existing clinical workflows and can lead to 
information overload if too much information is presented to clini-
cians at the same time, leading to inefficiencies and frustration for 
healthcare providers. To bridge the gap, our work aims to explore 
how to efficiently and effectively monitor rich multimodal patient 
data with RPM technologies, and leverage these data to enable 
AI-CDSS to support clinicians’ decision-making for cardiotoxicity 
early detection. 

3 Participatory Design 
Although prior research has identified four key challenges in man-
aging cancer treatment-induced cardiotoxicity and explored the 
potential of emerging technologies, clinicians’ perspectives on spe-
cific design requirements for integrating these technologies into 
clinical workflows remain underexplored. To bridge this gap, we 
conducted a participatory design (PD) study with clinical experts 
specializing in cancer treatment-induced cardiotoxicity, holding ses-
sions individually. The study aims to (1) map how the opportunities 
offered by emerging technologies can address these challenges and 
(2) understand the specific needs of clinician technology design to 
ensure effective integration into their decision-making workflows. 
By focusing on clinicians’ insights, we sought to align our system 
design with their practical needs and requirements. 

3.1 Study Participants 
The PD study aimed to explore how technologies could be tailored 
to clinicians’ needs, specifically to support their decision-making 
processes in managing treatment-induced cardiotoxicity. To achieve 
this, we recruited 11 clinicians with significant experience in this 
area by convenience sampling [87]. Recruitment involved leverag-
ing professional networks, referrals from colleagues, and participant 
recommendations, ensuring a diverse pool of experts. All partici-
pants were affiliated with a North American hospital, representing 
key specialties – oncology and cardiology – that are central to 
decision-making for cancer treatment-induced cardiotoxicity. Ta-
ble 1 presents the demographics of the participants with a randomly 
assigned number denoted as 𝑃#. Participants came from various 
departments and had a wide range of clinical experience, spanning 
1.5 to 13 years. 

3.2 Study Procedure 
The PD sessions were structured to actively involve clinicians in 
identifying challenges, exploring technological opportunities, and 
co-designing solutions to integrate emerging technologies into their 
workflows. Each individual session was divided into three phases: 
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P# Gender Department Job Title Year of Practice 

P1 Female Medical Oncology Breast Medical Oncologist 2 years 
P2 Male Radiation Oncology Gastrointestinal Radiation Oncologist 6 years 
P3 Female Bone and Marrow Transplant and Cellular Therapy Hematologist 1.5 years 
P4 Female Internal Medicine Oncologist 13 years 
P5 Female Sarcoma Center Sarcoma Medical Oncologist 2 years 
P6 Female Thoracic and Geriatric Oncology Thoracic and Geriatric Oncologist 7 years 
P7 Male Internal Medicine Cardiologist 8 years 
P8 Female Internal Medicine Hematologist 7 years 
P9 Male Hematology Hematologist 4 years 
P10 Male Medical Oncology Thoracic Medical Oncologist 7 years 
P11 Male Internal Medicine Cardiologist 7 years 

Table 1: Demographics of Participants in Our PD Study 

(1) entry questions, (2) participatory design with an initial User 
Interface (UI) draft, and (3) exit questions. 

We aimed to ensure all participants had a shared conceptual un-
derstanding of the technologies explored in RPM and AI-CDSS lit-
erature. To achieve this, before PD sessions, we developed an initial 
low-fidelity UI draft (Figure 2) for a clinician-oriented information 
dashboard. This prototype served as a probe to facilitate the co-
design process, focusing on eliciting participants’ broad feedback. 
Each feature was represented with placeholders or illustrative exam-
ples to demonstrate potential outputs and functionalities, helping 
bridge gaps in technical literacy and creating a shared foundation 
for discussion. Rather than presenting a fixed design, we offered 
multiple design options, varying in both content (e.g., visualizing 
different types of physiological data such as heart rate and oxygen 
saturation) and design (e.g., using line charts, bar charts, and dot 
plots). Examples of such design options are included in Figure 3 
as prompts for participant feedback. The initial UI design was in-
formed by prior literature and included conceptual representations 
of key features such as wearable devices, LLM-VA, and AI-driven 
prediction models. These conceptual elements were intended to 
spark discussions around potential functionalities, interactions, and 
design considerations for integration into clinical workflows. 

At the start of each session, participants were asked to recall 
a recent case involving cancer treatment-induced cardiotoxicity, 
contextualizing the challenges in monitoring and detection within 
their workflows. Following this, participants were asked to describe 
their current use of technologies in these workflows, share their 
familiarity with emerging tools, and provide their perspectives 
on potential technologies being studied or proposed for decision-
making support in this domain. 

During the PD phase, participants actively contributed to the 
refinement of the initial UI draft. They asked clarifying questions, 
proposed design revisions, and suggested new features with specific 
examples. They also envisioned practical use cases for particular 
scenarios and raised concerns about potential limitations. We con-
cluded each PD session with exit questions to gather final reflections 
and additional insights from participants. All interview questions 
can be found in Appendix A. 

The sessions were conducted remotely via Zoom by the first 
author and lasted 35 to 50 minutes. All sessions were recorded 

and transcribed with the participants’ consent. Two members of 
the research team independently analyzed the transcripts using 
inductive coding and thematic analysis [10, 11]. Through iterative 
discussions, the codes were refined into a consensus codebook to en-
sure an accurate representation of the data, minimizing redundancy 
and merging overlapping themes. The transcripts were re-coded 
based on the finalized codebook (Appendix 2). During the analysis, 
we observed that thematic saturation was naturally achieved. As 
we continued coding, no new themes emerged from the data after 
analyzing the transcripts of the 11 participants. 

Our research team combined expertise in HCI, clinical practice 
(with specialized knowledge in cancer treatment-induced cardiotox-
icity), and AI/ML, enabling a comprehensive understanding of our 
participants. We acknowledge that our interdisciplinary perspec-
tives influenced the design, analysis, and interpretation of the study. 
By adopting a user-centered approach, we aimed to prioritize the 
participants’ voices while using our diverse expertise to contextu-
alize their insights within the broader domain. 

3.3 Findings 
3.3.1 Challenges in Clinical Decision-making for Cancer Treatment-
Induced Cardiotoxicity. Previous studies [16, 52, 52, 53, 66, 76, 91, 
108, 109] have highlighted four main challenges in decision-making 
for cancer treatment-induced cardiotoxicity as we described in 
Section 2.1. While many of the challenges our participants described 
align with these four, they provide more nuanced insights into them. 

Symptoms Not just Subtle and Infrequent, But Sometimes Absent 
in the Early Stages. Our participants reinforced Challenge 1&2 
that symptoms are often subtle and infrequent in the early stages 
and difficult to detect during routine clinical assessments or outside 
of clinical settings. They also highlighted a critical nuance: in some 
cases, symptoms may be entirely absent, even when patients are 
experiencing severe conditions. For example, P4 shared a case where 
a patient, completely asymptomatic at home, was found to have 
a severe arrhythmia solely because he happened to wear a heart 
monitor, a device not routinely provided to all patients: 
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Figure 2: Our participatory design session. A participant is suggesting design revisions on the initial UI. 

Figure 3: Examples of low-fidelity visualization options for heart rate data used to elicit clinician feedback. 

“He had been on the heart monitor for about 3 or 4 
days... I got this message he had a severe form of ar-
rhythmia... He was completely asymptomatic. He was 
sitting at home relaxing, and the monitor picked up this 
thing.”(P4) 

Logistical Barriers and Non-Specific Tools Compound Self-Reporting 
Limitations. Participants reiterated Challenge 3, emphasizing that 
self-reporting, the primary means through which clinicians learn 
about patients’ symptoms at home, is fraught with limitations. They 
also pointed out factors that exacerbate this challenge, including 
logistical barriers and design-level limitations, which extend be-
yond the known issue of health literacy and patients’ tendency 
to downplay symptoms. One issue raised by participants is the 
presence of logistical barriers, which possibly hinder the effec-
tiveness of self-reporting even when patients are aware of their 
symptoms. These barriers, such as delayed communication between 
patients and healthcare providers, are particularly pronounced in 

resource-constrained settings, leading to discouragement and in-
creased cognitive load on patients, as described by P1: 

“In some areas, patients may not hear back right away 
from their physicians or nurses if they’re having symp-
toms... They may feel like they’re complaining too much 
or being a burden.”(P1) 

Participants also revealed the difficulty in recognizing cardiotoxicity-
specific symptoms within current self-reporting systems. Many 
tools currently in use are designed for general purposes rather than 
tailored to the nuances of cardiotoxicity. This gap leads to missed 
or underreported cardiac symptoms. For example, P5 emphasized 
that the surveys they use are “not specific to cardiotoxicity... unless 
there’s anything on the exam that suggests a cardiac problem.” 

Absence of Risk patterns as an Additional Burden to Clinician 
Workload. Several participants (P1, P2, P7) expressed their frustra-
tion with the absence of reliable patterns or correlations between 
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patient characteristics and cardiotoxicity risk, making it challeng-
ing to determine which patients require more intensive monitoring. 
As P1 noted, “We don’t have a good grasp on what features corre-
late with the likelihood of someone developing cardiotoxicity.” Such 
uncertainty often results in reactive decision-making, where clin-
icians have to wait for symptoms to manifest before intervening 
rather than being able to anticipate and address risks sooner. The 
uncertainty surrounding risk factors further complicates an already 
demanding workload Challenge 4, leaving clinicians to manage 
the additional cognitive and logistical burden of deciding which 
patients need closer monitoring. Such delays, compounded by late 
symptom reporting and diagnostic processes, can lead to belated 
intervention. P2 highlighted this issue by sharing a case in which 
delays in reporting and testing prolonged treatment decisions: “The 
symptoms were reported late... everything was delayed, from the echo 
to the stress test to the EKG.” 

3.3.2 Opportunities and Suggested Design Revisions. To explore the 
potential of technologies that can assist clinicians in addressing 
the identified challenges, we began by asking about their familiar-
ity with wearables, LLM-VA, and AI-based predictive risk scores. 
We then introduce these concepts alongside an initial UI draft of 
a clinician-facing dashboard that integrates these modules to fa-
cilitate discussion. Participants expressed strong interest in the 
system’s potential, highlighting key opportunities, sharing their 
perceptions, and providing suggestions for design improvements. 
We summarize the key insights below. 

Opportunity 1: Continuous Monitoring of Key Clinical 
Metrics Using Wearables. Participants highlighted the potential 
of wearables to provide continuous, real-time monitoring of pa-
tient’s vital signs, such as heart rate and blood pressure, which 
could enable identifying subtle patterns and anomalies in patient 
health. Reflecting on their experiences, clinicians noted the value 
of such monitoring, with P4 commenting, “I think we can pick up 
more patients with this. Or we can pick up patients earlier with this... 
We may be able to find more cardiac patients or cardiac adverse 
events related to our medications by doing this kind of monitoring.”. 
Continuous monitoring was also seen as a way to mitigate situa-
tional factors in clinical settings, such as “white coat hypertension”, 
where patients exhibit elevated blood pressure due to anxiety dur-
ing clinical visits. This opportunity provided by wearables could 
help clinicians recognize early and subtle symptoms, potentially 
responding to Challenge 1. 

Building on this opportunity, clinicians further emphasized the 
importance of continuously monitoring a comprehensive set of 
physiological parameters that are clinically important to cardiotox-
icity, which leads to our Design Revision 1: Monitoring Key 
Clinical Symptoms. Many clinicians mentioned heart rate, blood 
pressure, oxygen saturation, and, where possible, additional indi-
cators such as blood sugar levels. They were curious about the 
potential of wearable devices to track these diverse metrics, par-
ticularly in patients with complex health profiles. As P1 explained, 

“What other things could you track with the wearable? 
Blood sugar would be another one if that would be possi-
ble. . . a lot of our patients with cardiotoxicity also have 
metabolic syndrome and these blood sugar issues.”(P1) 

The ability to track these metrics in real-time continuously al-
lows for the early detection of signs such as arrhythmias or blood 
pressure fluctuations, which may not be apparent during routine 
clinical visits. 

Opportunity 2: Remote Monitoring for Geographically 
Distant Patients. Participants highlighted the advantage of using 
wearables in providing remote access to vital health data for patients 
who are geographically distant from the clinic or unable to visit 
regularly. As P1 explained: 

“A lot of our patients... travel very long distances to 
come here for treatment... they may call and be having 
an event where they feel really lightheaded or like they 
almost passed out... Having that data, especially if they 
can’t come in right away, is really helpful.”(P1) 

This opportunity responds to Challenge 2 by enabling remote, 
real-time monitoring through wearables, allowing clinicians to 
track patient health during gaps in clinical interactions and address-
ing symptoms that might otherwise go unnoticed. 

Extending this opportunity, clinicians highlighted the need for 
patient-specific baselines that can alert the care team only when 
significant deviation occurs, rather than bombarding them with 
excessive data. This need informs our Design Revision 2: Patient-
Specific Baseline Alerts for Remote Monitoring. For example, 
a sudden increase in the heart rate that deviates from a patient’s 
established pattern could trigger an alert for further investigation, 
as P6 suggested, “the care team really should only be alerted if there’s 
a significant change. That would be (when) something is wrong, we 
would need to intervene. Otherwise, it’s just too much data not useful.” 

Opportunity 3: LLM-Based Conversational Agent for Symp-
tom Tracking In addition to the potential of wearables in cap-
turing physiological data, participants also saw great potential in 
using LLM-based CAs to track patient-reported symptoms over 
time without requiring manual input from patients. Several par-
ticipants mentioned that this could ease the burden on patients, 
many of whom struggle to remember or document their symptoms 
accurately between appointments. P2 emphasized the convenience 
of voice interaction, especially for patients who may have difficulty 
with traditional reporting methods, such as filling out forms, “This 
is a really good idea. And that way they talk, and they don’t need 
to be typing or spending time.” Furthermore, clinicians pointed out 
that combining wearables and LLM-based CAs could be particularly 
useful, as each technology addresses different aspects of patient 
monitoring. These two modalities complement each other and offer 
the ability to link physiological vital signs with patient-reported 
symptoms, as P1 commented, “being able to correlate the time with 
their biometrics could be really helpful.” This opportunity potentially 
addresses Challenge 3 by providing automated symptom tracking, 
reducing reliance on patient memory, and improving the accuracy 
of symptom reporting through the correlation of physiological and 
self-reported data. 

Building on this opportunity, clinicians first noted the impor-
tance of monitoring critical symptoms such as chest discomfort, 
palpitations, and shortness of breath, which are typical early indi-
cators of cardiotoxicity. As this need is closely related to Design 
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Revision 1, we now extend it to Monitor Key Metrics and Symp-
toms. Secondly, as clinicians emphasized the importance of cor-
relating symptoms with physiological data, they expressed a clear 
need for dynamic and flexible visualization of patient information, 
combining high-level summaries with detailed data views. This 
leads to our Design Revision 3: Enhanced Visualizations for 
Critical Data Interpretation. This dual approach would enable 
quick assessments while also allowing deeper dives into specific 
trends and variations when necessary. For instance, a summary 
graph of daily average heart rates can offer a snapshot of a patient’s 
cardiovascular status. At the same time, the option to view hourly 
data would provide insight into specific fluctuations and their po-
tential causes. P5 emphasized the importance of trends on isolated 
data points, stating, “The trend is extremely more important than just 
the one time.” This flexibility in visualizing data enables clinicians 
to identify patterns and correlations that might not be immediately 
obvious from a single metric. For example, being able to drill down 
into hourly heart rate data can help clinicians understand the con-
text of a daily average that deviates from the baseline, facilitating 
more informed decision-making. 

Opportunity 4: AI-based Summarization and Predictive 
Risk Scores Several participants noted that navigating extensive 
medical records could be time-consuming and challenging, echo-
ing Challenge 4, and pointed out that AI-powered summarization 
tools can potentially help alleviate this burden by providing concise 
overviews of patient records. P4 echoed this sentiment by highlight-
ing the growing issue of clinician burnout, much of which is driven 
by the need for documentation in EHRs: “There’s a lot of burnout in 
medicine, and the burnout is from all of this documentation that we 
do. I see a huge role of AI in that documentation... fulfill out the EHR 
data automatically.” 

Also, participants saw promise in AI-generated predictive tools, 
particularly for assessing cardiotoxicity risk. As mentioned in Sec-
tion 3.3, clinicians currently rely on a limited set of risk factors to 
determine which patients may be at higher risk. Participants em-
phasized the lack of standardized tools for predicting cardiotoxicity 
and expressed their need for such tools: “I have not come across 
any risk scoring for cardiotoxicity. So I think that would be helpful.” 
Participants also noted that AI-driven risk scores could be dynamic 
and adjust as patient data are updated, offering them a continuous 
risk assessment. For example, P7 described how AI could assist in 
this ongoing process: 

“I think with AI there will be tools in place to even 
suggest what the next order should be... AI would help 
you understand what the next step could be even before 
you start talking to the patient.”(P7) 

In addition to its potential, clinicians stressed the importance 
of the explainability of AI models. They expressed the need for AI 
models to clearly communicate what risk scores mean and what 
actions should follow. Without explanations, they may be unsure 
how to act on the AI’s predictions. For instance, P1 discussed the 
kind of explanation needed: “like the trigger event of having this 
higher score is maybe consideration for cardiology referral.” The need 
for explainability is also closely tied to how clinicians perceive 
AI in their workflows. For many participants, they expressed the 

same sentiment that AI tools should serve as assistants rather than 
replace their clinical judgments. 

This need informs our Design Revision 4: Clear Explanation 
of Technology to Prevent Misunderstanding. While we pre-
sented AI modules and LLM-based voice assistants to clinicians, 
clinicians expressed their expectations that they should be more 
explainable to prevent misunderstandings and ensure proper usage. 
For example, understanding the basis of AI risk scores is crucial for 
clinicians to trust and effectively use the system. As P4 commented, 

“So you have to see what you build it (AI risk score) on... 
How will you define the score? The problem with scores 
is that you have to sit down and manually do that. If 
something does it for us, we’ll be happy to use it. ...AI is 
supposed to be my assistant, not my replacement.”(P4) 

They would like to know how these scores are calculated and 
what they present. Also, they mentioned the need for LLM-based 
voice assistants to provide clear explanations about how AI re-
sponds to different patient scenarios. As P8 pointed out, under-
standing when to escalate care based on AI alerts is crucial: “Short-
ness of breath, discomfort, and passing out should always prompt 
contact with the healthcare provider... something that is acute, that is 
changing, should be evaluated by a healthcare professional.” 

4 System Prototype 
The opportunities and suggested design revisions outlined in Sec-
tion 3.3.2 guided the development of our pilot CardioAI system, 
designed to address the four key challenges in managing cancer 
treatment-induced cardiotoxicity. The system employs a multi-
modal AI-based approach, offering continuous remote monitor-
ing and explainable risk prediction to support clinicians’ decision-
making. An overview of our pilot system architecture is shown in 
Figure 5. The pilot system is designed to seamlessly collect patient 
data from wearable devices and an LLM-VA (Section 4.1), process 
it through the backend infrastructure (Section 4.2), and present 
collected information and explainable AI risk scores on a clinician-
facing dashboard (Section 4.3). 

4.1 Wearable and Smart Speaker Hardware 
Our findings in Section 3.3.2 suggest opportunities (Opportunity 
1, 2 & 3) to use wearables and LLM-VA to monitor patient physio-
logical data and patient-reported symptoms continuously. 

The wearable device of our system is the Garmin Vivosmart 
5 [36], selected for its capability to continuously collect and monitor 
physiological signals suggested by clinicians, including heart rate, 
respiration rate, blood oxygen saturation, and skin temperature. 
As clinicians have expressed the importance of minimal effort for 
patients to use the device, we designed this subsystem to ensure 
data collection remains unobtrusive. Physiological data are col-
lected every 10 seconds and periodically transmitted to the study 
app on the patient’s smartphone. The study app installed on the 
patient’s device runs passively in the background, coordinates the 
data sync with the Garmin wearable without any user interaction, 
and securely uploads the collected data to the system’s backend. 
The inclusion of the smart speaker in our system, supported by 
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Figure 4: AI-based Cardiotoxicity Risk Score Prediction 
Framework. 

LLM, allows patients to self-report symptoms through natural spo-
ken interactions. We chose Amazon Echo Dot1 as our smart speaker 
device as it is affordable and easy to use. It comes equipped with 
built-in Speech-to-Text and Text-to-Speech functionality, and Alexa 
Skills Kit integration2 ensures a smooth connection to the backend. 

4.2 Backend Algorithms 
The backend architecture stores, processes, and analyzes the data 
the wearable and smart speaker collects with the following modules. 

Conversation Module. The Conversation Module processes pa-
tient input from the smart speaker and enables dynamic, person-
alized interactions through natural language processing. The core 
of this module is powered by a Retrieval-Augmented Generation 
(RAG) [35, 60] LLM, based on OpenAI’s GPT-4 model [74, 75], which 
is hosted on Microsoft Azure’s HIPAA-compliant infrastructure [75]. 
We chose the RAG approach for its ability to enhance LLM’s gen-
erative capabilities by retrieving domain-specific knowledge from 
external resources, such as research articles on cancer treatment-
induced cardiotoxicity and established clinical guidelines [63]. Fur-
thermore, the backend is designed to retrieve and reference prior 
conversations with the patient. For instance, if a patient previously 
reported palpitations, the system can refer to that symptom in fu-
ture conversations, asking whether the palpitations have changed 
in frequency or severity since the last report. 

Risk Prediction Module. We leverage Transformer [100] as the 
backbone to predict cardiotoxicity after assignment to treatment. A 
logistic regression model is used first to analyze long-term EHRs to 
identify high-risk factors with positive coefficients. These identified 
risk factors, alongside static patient information (e.g., demograph-
ics), and temporal data (e.g., prior medical events), are passed into 
the Transformer model to calculate the probability of cardiotox-
icity risk, as Figure 4 shows. The Transformer model processes 

1https://www.amazon.ca/Echo-Dot-5th-Gen/dp/B09B8V1LZ3
2https://www.amazon.ca/b?ie=UTF8&node=16286269011 

sequences of patient visits and generates health state vectors, em-
bedding medical codes, procedures, and medications into fixed-size 
low-dimensional vectors to mitigate high-dimensionality issues 
common in EHR data. To focus on the most relevant medical events 
within a visit, we integrate a variable attention module, which au-
tomatically prioritizes critical events for accurate cardiotoxicity 
prediction. For time-to-event prediction, we deploy a Weibull Cox 
proportional hazards (WCPH) model, converting the cardiotoxi-
city risk prediction into a survival analysis framework. The risk 
score is calculated as a product of a baseline hazard function and 
the patient-specific cardiotoxicity risk based on the Transformer’s 
output, reflecting the clinical trajectory of patients over time. All 
learnable parameters, including the scale and shape parameters of 
the Weibull distribution [7], the hazard weights, and Transformer 
parameters, are optimized through a mini-batch stochastic gradient 
descent process [30]. To improve the interpretability of the model, 
we adopt the Shapley value method [107], providing clinicians with 
clear information on the key factors driving the predictions of high 
or low cardiotoxicity risk. Additionally, we incorporate an LLM-
based explanation generation module to provide plain-language 
explanations of risk scores and Shapley values, making the results 
more accessible to clinicians. 

Information Database. We employ a cloud-based database to 
store collected data from the wearable and smart speaker, conver-
sational logs, and historical EHRs. These data will facilitate the 
functionality of the other modules in the system. The database is 
encrypted to protect each individual’s privacy. 

Summarization Module. The Summarization Module generates 
comprehensive daily summaries by retrieving and synthesizing data 
from Information Database: patient EHRs, previous conversation 
logs, and physiological data. This module, powered by GPT-4 [74], 
ensures that healthcare providers receive a clear, concise, and holis-
tic view of the patient’s health status each day. By pulling data from 
the Information Database, the module reviews historical EHRs to 
provide essential context, the most recent conversational data, and 
data from the wearables with a particular focus on detecting any 
abnormalities or deviations in physiological metrics such as heart 
rate, respiration, or SpO2 levels. 

4.3 Frontend: Information Dashboard UI 
Based on the opportunities and design revisions suggested by clin-
icians in Section 3.3.2, we transformed the initial low-fidelity UI 
prototype into a detailed and functional final interactive dashboard. 
While the initial iteration explored multiple design and content op-
tions, the final UI reflects an agreed-upon choice that consolidates 
clinicians’ preferences into a streamlined, user-centered interface, 
which operationalizes the conceptual representations into practical 
and cohesive elements tailored to meet clinicians’ workflows and 
decision-making needs. 

Specifically, we reorganized the overall layout to position wear-
able sensor data and conversation logs on the same page, placing 
them in parallel, which allows clinicians to view physiological met-
rics alongside patient-reported symptoms simultaneously without 
additional navigation. In addition, we prioritized displaying the 
metrics and symptoms that clinicians identified as most relevant 

https://www.amazon.ca/Echo-Dot-5th-Gen/dp/B09B8V1LZ3
https://www.amazon.ca/b?ie=UTF8&node=16286269011
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Figure 5: System Architecture of CardioAI. It integrates a wearable and a smart speaker to continuously collect physiological 
data and patient-reported symptoms. Data is processed by three key LLM-powered backend components: a conversation module, 
a summarization module, and a risk prediction module. The processed data, including key health summaries and cardiotoxicity 
risk scores with explainability, is then visualized on a clinician-facing dashboard. 

for cardiotoxicity management and adopted visualization formats 
that clinicians suggested as most appropriate for each metric. To 
Design Revision 4, we revised the section at the upper-right cor-
ner of the dashboard, which defines the cardiotoxicity risk score, 
includes dynamic visualizations of risk scores over time, and in-
corporates feature importance indicators to clarify the key factors 
contributing to the score. Furthermore, we separate the summary 
of symptoms and metrics from the prior summary module and 
locate this section below the patient information, which leverages 
LLM-generated summaries to highlight abnormalities. The final 
dashboard interface has five main modules, as shown in Figure 1. 

Module A: Patient Information Overview integrates seam-
lessly with existing EHR systems, providing immediate access to 
critical patient information without the need to switch between 
different platforms, such as demographics, cancer type, stage, and 
treatment history. 

Module B: Daily Summary aggregate and summarize key 
information from collected self-reported symptoms and wearable 
sensor data in a concise format to support a quick overview of the 
patient’s current status, particularly focusing on any significant 
changes or issues that might require immediate intervention. 

Module C: Wearable Sensor Data displays the collected physi-
ological data, such as heart rate, respiration, oxygen saturation, and 
skin temperature. The visualization is presented in an interactive 
format, allowing providers to explore different data modalities over 
specific time periods, quickly identifying trends or anomalies in 
the patient’s physiological signals. 

Module D: Explainable AI-generated Risk Score presents the 
predicted cardiotoxicity risk score and its trends. We also present 
its Shapley Value as a breakdown of the most influential factors 
that predicted the risk score and an LLM-generated plain-language 
explanation of the risk score and its Shapley Value. 

Module E: Conversation Log shows the raw conversation 
log between the patients and the smart speaker. The visualization 
leverages a clear color scheme to differentiate “normal” (green) and 
“abnormal” (yellow) symptoms reporting and a selection feature 
to enable clinicians to select specific dates to review the detailed 
conversation logs. 

5 Evaluation 
To understand clinicians’ perceptions of our pilot system, we con-
ducted a heuristic evaluation study with clinicians to interact with 
and provide feedback on our pilot system. Each individual evalu-
ation focused specifically on assessing the clinician-facing dash-
board (Section 4.3) to systematically examine how clinicians would 
utilize the system for decision-making for cancer treatment-induced 
cardiotoxicity, further addressing RQ2. The evaluation results demon-
strate that participants generally appreciated CardioAI’s simplicity, 
ease of use, improved access to relevant information, and support 
for proactive clinical decision-making. 

5.1 Methods: Participants and Procedure 
As we focus on evaluating how the pilot system would support clini-
cians’ decision-making at this phase, our heuristic evaluation served 
as a design probe to explore specific aspects of the clinician-facing 
dashboard, such as the presentation of information, accessibility, 
clinicians’ information usage, and their overall perception. The goal 
was to refine the system’s design by evaluating its usability and iden-
tifying areas for improvement, leveraging targeted insights from a 
smaller and highly specific group of clinicians before engaging a 
larger cohort of clinical experts in future evaluations. We adopted 
the same methodology described in Section 3.1 to recruit clinicians 
from our previous participatory design study cohort. Through con-
venience sampling, we recruited four clinicians (P3, P5, P7, P11): two 
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oncologists and two cardiologists. This balanced participant group 
was selected to ensure high sample specificity [65], representing 
the primary specialties involved in cancer treatment-induced car-
diotoxicity management. Given the study’s narrow aim of evaluat-
ing the clinician-facing dashboard’s usability and decision-making 
support, this specific and well-defined group provided sufficient 
information power [65] to address our research objectives. Before 
the study, we pre-loaded synthetic patient data into the prototype, 
representing cardiotoxicity scenarios typically encountered in clin-
ical practice. At the beginning of each session, researchers first 
introduced the purpose of the study and provided a brief expla-
nation of the think-aloud methodology. Clinicians then engaged 
in unstructured interaction with the dashboard. They freely navi-
gated its features and explored its functionalities while verbalizing 
their thought processes and actions. To observe natural interaction 
patterns, researchers refrained from providing specific guidance 
during this phase. 

Following each think-aloud session, we then conducted a semi-
structured interview with each participant. The interview questions 
can be found in Appendix B. These interviews further explored how 
they envisioned using the dashboard for decision-making, their per-
ceptions of the usability in a clinical setting, and their expectations 
or concerns about integrating the system into their workflow. The 
study concluded with a brief evaluation questionnaire including the 
NASA Task Load Index (TLX) [42] and the System Usability Scale 
(SUS) [12], to assess perceived workload and system usability. The 
TLX [42]questionnaire used a 7-point Likert scale to assess different 
elements of the task load. For questions related to demand, effort, 
or frustration, lower scores reflected a lighter workload, which was 
preferred for the system. For performance questions, higher scores 
indicated better results. The SUS [12], a widely recognized usability 
scale, asked users to rate their agreement with 10 statements, rang-
ing from "strongly disagree" to "strongly agree", on topics like ease 
of use of the system, the need for technical support, and learning 
difficulty. Two researchers processed the interview transcriptions 
with thematic analysis, as in the previous participatory design ses-
sions. We summarize our findings below. 

5.2 Findings 
5.2.1 Clinicians’ Uses of Information for Decision-making. Dur-
ing think-aloud sessions, clinicians described how they would use 
the information in their decision-making, and we identified how 
the system could support them in the three stages of the current 
decision-making workflow as discussed in related work: symptom 
identification, diagnostic testing and collaboration with other spe-
cialties, and clinical decision-making and intervention. 

Symptom Identification. In the first stage of the diagnosis of car-
diotoxicity, clinicians often begin by identifying symptoms based 
on patient self-reports, either outside the clinic or during in-person 
visits. Clinicians praised the system’s streamlined access to symp-
tom reports via the voice assistant module. They typically examined 
the conversation log for detailed information about when and how 
symptoms were reported. Clinicians highlighted the importance of 
correlating these reported symptoms with the patient’s physiolog-
ical data, and they appreciated the system’s ability to seamlessly 
align symptoms with physiological data for deeper insight. For 

example, when patient-reported symptoms such as chest pain or 
shortness of breath were present, clinicians would immediately 
check the wearable module for specific physiological metrics like 
heart rate, blood pressure, and blood sugar levels. As P7 described 
his thinking process: “What was the symptom? So chest pain, short-
ness of breath... the question is what was the heart rate, what was the 
blood pressure? What was the blood sugar?” 

Also, clinicians appreciated the system’s ability to provide quick 
and easy access to crucial metrics, such as blood pressure and heart 
rate, which they consistently check during patient assessments. 
P3 emphasized the importance of these vital signs in their routine 
evaluations, stating: “Blood pressure and heart rate are the key things 
walking into the room, like any and every time.” 

Diagnostic Testing and Collaboration with Other Specialties. After 
identifying potential symptoms of cardiotoxicity, clinicians typi-
cally move to the diagnostic stage, where they review recent test 
results or order new tests to confirm or rule out cardiotoxicity. Clini-
cians praised our system for streamlining the retrieval of diagnostic 
data, allowing them to easily access past and current test results 
in one place and interpret diagnostic results in conjunction with 
the patient’s medical history without switching between different 
platforms or systems. Clinicians frequently utilized the "Results" 
and "Therapy" tabs to review key diagnostic tests for heart function, 
such as echocardiograms, cardiac MRIs, and EKGs, which are cru-
cial for assessing cardiotoxicity. As P3 emphasized: “For the heart 
laboratory tests, the first things I look at are the cardiac laboratory 
tests... like did they have an echocardiogram, a cardiac MRI, or even 
EKGs.” Beyond diagnostic results, clinicians valued how the system 
integrates a patient’s treatment history with their diagnostic data. 

Clinical Decision-Making. Once the diagnostic evaluation is com-
plete, clinicians need to decide whether to adjust the patient’s 
treatment plan, initiate new interventions, or increase monitoring 
to mitigate cardiotoxicity risk. Clinicians emphasized the value 
of our system’s real-time cardiotoxicity risk scores to guide these 
critical decisions. The dynamic nature of the risk scores provided a 
clear picture of the risk of cardiotoxicity of a patient over time. 

Clinicians appreciate that the system allows them to assess car-
diotoxicity risk before proceeding with treatment. P3 highlighted 
how this feature supports informed decision-making, particularly 
when choosing between treatments with varying levels of risk: 

“If you could at baseline, incorporate all the informa-
tion that you have on the patient and say, ‘Hey, this 
patient’s actually super high risk for cardiotoxicity from 
treatment option A, but treatment option B is less risky,’ 
then that could actually inform your treatment.”(P3) 

By offering this comparison, clinicians could balance the potential 
risks of cardiotoxicity against the efficacy of cancer treatments, 
enabling more tailored and safer treatment plans. 

In addition to the initial risk assessment, clinicians valued the 
ability to track changes in the cardiotoxicity risk score over time. 
This feature enabled them to detect increasing risks and intervene 
before serious cardiac events occurred. This capacity for ongoing 
risk monitoring allowed clinicians to dynamically adjust treatment 
plans, ensuring that patients were protected from severe cardiotox-
icity while still receiving effective cancer care. 
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Moreover, clinicians appreciated how easily accessible and in-
terpretable the risk scores were, which contributed to making fast, 
informed decisions without being overwhelmed by excessive data. 
P11 expressed their satisfaction with the system’s straightforward 
design, “This risk score is nice. I would look at that quickly... It doesn’t 
look cumbersome.” This simplicity allowed clinicians to integrate 
the risk score into their workflow seamlessly, supporting their 
decision-making process efficiently and effectively. 

5.2.2 Usability of Our System. During the study, clinicians were 
able to interpret the presented information and incorporate it into 
their existing workflow. As they interacted with the system, clini-
cians highlighted several key aspects of the system’s usability and 
its potential to support their clinical decision-making. The average 
SUS score is 72.33 ± 1.89 (out of 100), suggesting it offers a solid 
level of usability. 

Simplicity and Ease of Use. A major theme highlighted by par-
ticipants was the system’s simplicity and ease of use, which 
they considered essential for smooth integration into their clinical 
workflow. All participants rated the system very highly for ease of 
use in SUS, indicating that they found the system very easy to navi-
gate, such as P3’s comment: “like this interface so far, is relatively 
simple... It doesn’t look cumbersome.” This simplicity in design was 
further supported by the NASA-TLX effort score, which averaged 
1.13±0.70 (out of 7.0), indicating the system required minimal effort 
to operate and could be adopted easily. 

Participants also expressed high confidence in their ability to 
use the system effectively, supported by the SUS confidence metric, 
and many stated that they felt comfortable completing tasks without 
the need for additional help. They agreed that most people would 
be able to learn to use the system very quickly, a sentiment 
captured by the high SUS score for this question, highlighting its 
low learning curve and easy fit within their existing workflows. 

Improved Access to Information and More Relevant Information. 
Participants emphasized that the system’s ease of access to rel-
evant information was a significant advantage. By presenting 
the data in a streamlined manner, the system minimized the need 
to search through multiple records manually, improving workflow 
efficiency. As P11 explained, “If you have more information, this will 
make it easier without us having to look back in the chart.” Further-
more, the NASA-TLX results highlighted that the system did not 
impose a high workload on users as mental demand (1.13 ± 0.23) 
and physical demand (0.73 ± 0.42) are low. This suggests that the 
system effectively supported the retrieval and organization of in-
formation without imposing an additional burden on users’ mental 
or physical resources. 

Participants also appreciated the system’s ability to deliver highly 
specific and organized information. This targeted presentation 
of data was considered essential to help them make informed de-
cisions related to cardiotoxicity. P11 pointed out that the system 
effectively prioritized cardiotoxicity-related information with a 
more focused view: 

“In the chart, there’s so much more data. This is more 
specific, organized, mostly for cardiotoxicity. So the app 
provides that more specific concerns information.”(P11) 

Supporting Proactive and Informed Clinical Decision-Making. The 
system’s capacity to facilitate proactive decision-making was a 
significant benefit highlighted by the participants. By providing real-
time updates and predictive insights, the system allowed clinicians 
to anticipate potential complications and intervene early, shifting 
from a reactive to a more proactive approach. P5 remarked, 

“I think workflow wise, this would actually just preempt 
us ... so at least this way, we have a little bit more data 
to say like, hey, you should go.. or hey, just follow up 
with your cardiologist... I think that part would be really 
helpful in terms of how we actually manage patients 
and what we refer them.”(P5) 

In addition to enhancing proactive care, the system was praised for 
its role in complementing existing clinical tools rather than 
replacing them. Clinicians felt that the system could augment their 
capabilities to monitor patients. 

Clinicians also recognized the AI-based system’s potential for sup-
porting long-term monitoring and follow-up care, particularly 
for patients in the survivorship phase of cancer treatment. The sys-
tem’s ability to continuously monitor patient health for extended 
periods was seen as a valuable tool to detect later-emerging car-
diotoxic effects and ensure ongoing patient safety. P3 suggested, 

“Maybe in your survivorship, you know your patients 
who are 5, 10 years out from their doxorubicin or their 
chest radiation... having a 30-day monitoring period 
before their surveillance visit would help make sure 
there’s no worrying signs there that would prompt more 
cardiac.”(P3) 

5.2.3 Future Expectations. During think-aloud sessions, clinicians 
also provided their future expectations for the system, highlighting 
where they envision the prototype could be further improved. 

Enhancing Data Relevance and System Integration. While clini-
cians highlighted the system’s improved access to relevant infor-
mation as a significant advantage, they also expressed the need for 
more clinically relevant data to support decision-making further. 
One key request was for comprehensive tracking of all patient med-
ications, including non-cancer treatments that could interact with 
cancer therapies or exacerbate cardiotoxicity. P7 pointed out, “This 
is only the cancer treatment. Normally, it’s not just 3 or 4 medica-
tions... there are other medications,” highlighting the complexity of 
managing patients undergoing cancer treatment. By incorporating 
a more thorough medication history, the system could better sup-
port clinicians in recognizing potential drug interactions and side 
effects that could impact patient health outcomes. 

Clinicians also expressed the need for more detailed informa-
tion about patients’ anti-cancer treatments, such as the type of 
chemotherapy administered, its last administration date, cumula-
tive dose, and associated cardiotoxic risks. They emphasized that 
not all anti-cancer treatments have the same cardiotoxic potential, 
and understanding these specifics is essential for effective man-
agement. For example, P7 remarked, “I would want to know what 
exactly is the chemotherapy that we’re talking about, because not 
all chemotherapies have cardiotoxicity,” pointing to the necessity 
of providing granular details to assess risks accurately and make 
informed treatment decisions. 
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Furthermore, while clinicians praised the system’s ability to 
streamline access to relevant cardiotoxicity-related information, 
reducing the need to search through multiple records, they also 
expressed the expectation for it to integrate more seamlessly with 
the tools they already use. Reflecting on past experiences, they 
described the challenge of navigating between various systems and 
managing the multiple risk scores and alerts already in EHRs. As 
P5 noted, 

“We do have, in our electronic medical record, a lot of 
these risk scores that are already kind of popping up 
and showing up for us. There’s a risk score for opiate 
abuse, a risk score for hospital readmission, a couple of 
different things. So we want these tools, but there’s also 
some alarm fatigue. Sometimes we see so much when 
we log in that we just kind of ignore it and get to what 
we need to do in the chart.”(P5) 

Customization Based on Clinicians’ Specialties. Another promi-
nent theme from the feedback was the collaborative nature of car-
diotoxicity decision-making, emphasizing the need for the system to 
offer customization based on the user’s specialty. Decision-making 
in cancer treatment-induced cardiotoxicity typically involves mul-
tiple specialists, such as cardiologists and oncologists, who each 
prioritize different aspects of patient data. For instance, cardiolo-
gists are primarily concerned with cardiac metrics, while oncolo-
gists need detailed information about anti-cancer treatments. P7, 
a cardiologist, highlighted this divergence in priorities, explained, 
“For a cancer doctor, the mammogram is useful, important. But for 
me, it probably doesn’t give any additional information,” pointing 
out the varying relevance of certain data types depending on the 
specialist’s focus. In contrast, P5, a medical oncologist, stressed the 
need for a quick, high-level overview of cumulative anthracycline 
dosage, reflecting their focus on cancer treatment-related metrics. 

In addition, the collaborative nature of decision-making often 
requires the input of both cardiologists and oncologists, making 
it crucial for the system to facilitate information sharing between 
specialties. P11 highlighted this collaborative dynamic, emphasizing 
the importance of reviewing notes from other specialists to gain a 
comprehensive understanding of the patient’s condition: 

“I do look at the recent progress notes. I mean, sometimes 
the patient forgot what happened. So it’s also good for 
me to go and look at those notes before walking in. So I 
know what other providers have seen. And then I can 
also estimate what issues I should address even if the 
patient doesn’t bring it up, because the cancer team 
may have issues that they want some level of input 
on. I spent a lot of time looking these notes to try to 
understand what’s going on. So we can make decisions 
about whether it’s the cancer drugs or not.”(P11) 

By catering to the specific needs of different specialists while en-
abling collaboration, the system can make it easier for clinicians to 
access the information most relevant to their respective roles and 
share critical insights across specialties. 

5.2.4 Concerns. 

Ethical Concerns. While remote monitoring systems have the 
potential to improve patient care through real-time data collection, 

clinicians expressed ethical concerns around their practical imple-
mentation, especially regarding timely interventions, ambiguity in 
responsibility, and the lack of patient education. 

One significant concern is the gap between real-time data avail-
ability and timely interventions. Although the system could alert 
clinicians to a patient’s acute medical condition, there remains 
uncertainty about how quickly these alerts can be acted upon, es-
pecially outside regular office hours. Clinicians expressed worry 
about how the system would function when they are not readily 
available to respond. As P5 explained, 

“I’ll be honest that it’s gonna be hard to have, or to even 
remember to look at this dashboard sometimes, right? 
Or even if you check it 8 am every morning, you’re 
gonna miss, you’re inevitably gonna miss something 
later or you’ll catch it later after the fact.”(P5) 

A further concern related to timely intervention is the ambiguity 
of responsibility when critical alerts are generated. Clinicians ex-
pressed that, even when alerts are issued promptly, the uncertainty 
around who is responsible for acting on them adds another layer 
of complexity. As P11 pointed out, “identifying who’s gonna take 
charge if there’s a red flag that comes out is a significant challenge.” 
P7 expanded on this concern by posing critical questions about how 
these alerts would be managed in practice, given the constraints of 
staffing and availability: 

“Thinking about staffing, thinking about like, who’s 
going to be checking in with the patient? Obviously, if 
the patient just starts talking, there’s no guarantee that 
someone’s available to listen and take that message. 
Because if the healthcare system is being notified that 
the patient has a acute medical issue like, how does that 
get to the right person to figure out, hey, do they need 
to call 911? Or do we need to get them to the emergency 
room right now?”(P7) 

This highlights the logistic challenge of ensuring that the right 
person is available to receive the alert and empowered to make 
critical decisions based on it. 

Another recurring theme in the discussions was the risk of pa-
tients placing too much trust in the system, assuming that entering 
data into an app or chatbot would suffice for urgent medical issues. 
Clinicians were concerned that misplaced trust can lead patients to 
delay seeking immediate medical attention, relying solely on the 
chatbot for guidance. This points to a critical need for patient edu-
cation as P11 emphasized the importance of clear communication 
with patients when they need to take action: 

“We have to make sure that patients know... Some pa-
tients might think, ’Oh, well, I told my chatbot that 
I had chest pain, so it’s fine’... but they need to know 
what red flag symptoms are and that they need to seek 
immediate medical attention.”(P11) 

P7 further stressed that patients need to be aware of the system’s 
limitations during off-hours, “Patients need to know that if they told 
their chatbot that they had chest pain at 9 pm on a Friday. . . no one’s 
gonna check the chatbot until Tuesday when they get back.” 

Accuracy and Validation of Information. Clinicians also raised 
concerns about the accuracy and validation of the information. 
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They were cautious about relying on data generated by technologies 
without rigorous validation. P7 noted: 

“If it is not (validated), how should I be sure that this 
is all accurate information there? Because if I’m not 
convinced, like I might be looking at the information, 
but if I’m not sure whether the information is accurate, 
then we’ll go back to the patient’s chart in our own 
system and look for that information.”(P7) 

Clinicians expressed that without confidence in the accuracy of the 
data, they are inclined to verify it against existing systems, which 
potentially undermines their efficiency. P10 echoed this concern, 
emphasizing that for new technologies to gain adoption in clinical 
settings, they need to undergo the same rigorous validations as 
existing medical tools. 

6 Discussion 
In this discussion, we explore the broader implications of our find-
ings. We begin by discussing the potential of our system in ex-
tending clinicians’ capabilities beyond clinical settings (Section 6.1). 
We then propose design considerations for AI-assisted proactive 
decision-making (Section 6.2). We highlighted the technical, ethical, 
and privacy challenges that arise from implementing these AI-based 
systems, with particular attention to infrastructure, patient reliance, 
and data security concerns (Section 6.3). Finally, we presented the 
limitations and future directions of our work (Section 6.4). 

6.1 Blurring the Boundary Between Clinical 
and Non-Clinical Settings 

In this paper, we shed light on the critical challenges of decision-
making for cancer treatment-induced cardiotoxicity. One of the 
overarching factors underlying these challenges is the traditional 
separation between clinical and non-clinical settings, which shapes 
how monitoring, diagnosis, and treatment decisions are made. His-
torically, healthcare delivery has been episodic and predominantly 
confined to structured environments such as clinics and hospitals, 
where clinicians rely on standardized tools and real-time data avail-
able only during patient visits [73]. This hospital-centric care model, 
however, is increasingly inadequate for conditions like cardiotox-
icity, where symptoms can manifest unpredictably and outside 
scheduled clinical visits. 

The vision of extending healthcare beyond traditional clinical 
settings is not new. Over decades, various models and frameworks 
have been advocated for a more integrated, continuous approach 
in healthcare [15, 25, 48, 50, 77]. For instance, the Patient-Centered 
Medical Home (PCMH) [50, 82, 92] promotes comprehensive care 
coordination and management that spans various care environ-
ments. Similarly, the integration of telemedicine and RPM tech-
nologies [19, 56, 72] has enabled continuous patient monitoring in 
non-clinical settings, helping to address chronic and high-risk con-
ditions, such as heart failure, diabetes, and cancer treatments [27]. 
Researchers in healthcare and the HCI community have been ad-
vancing this vision by designing technologies that allow clinicians 
to remotely track patient data [28, 39, 41, 43, 96, 101] and facilitate 
patient communications [38, 54, 61, 79, 110, 113, 117]. 

Our work builds on these studies by specifically operationalizing 
these visions in the context of cancer treatment-induced cardiotoxi-
city. While previous research has demonstrated the promise of RPM 
and CDSS, the unpredictable nature of cardiotoxicity necessitates 
a more proactive and continuous approach. Our findings suggest 
that CardioAI, a multimodal AI-based system, has the potential to 
extend clinicians’ capabilities beyond clinical settings by providing 
continuous monitoring of symptoms and real-time risk prediction. 
By integrating wearable devices, LLM-based voice assistants, and 
AI-driven analysis, our system facilitates seamless information col-
lection from non-clinical settings into clinical workflows. Our study 
offers a practical application that ’blurs the boundaries’ between 
clinical and non-clinical settings. 

While our study demonstrates the promise of multimodal AI-
based systems in extending clinical capabilities, we also underscore 
the importance of considering the broader implications of these 
systems. Continuous data streams can be invaluable for conditions 
like cardiotoxicity, where early intervention is critical, but they may 
pose challenges in other contexts, such as causing patient anxiety or 
information overload in less dynamic or chronic conditions. These 
technologies should not be applied uniformly; instead, we argue 
that their use needs to be tailored to specific healthcare contexts. 
Rather than attempting to erase the boundary between clinical 
and non-clinical settings, we advocate for thoughtfully extending 
clinical capabilities to better address the needs of clinicians and 
patients, particularly for conditions that benefit from early detection 
and intervention. This perspective acknowledges the strengths of 
traditional clinical settings while recognizing the need for flexibility 
in delivering care across diverse environments. 

6.2 Design Considerations for AI-Assisted 
Proactive Decision-Making 

Our studies highlight the potential of CardioAI in supporting clini-
cal decision-making for cancer treatment-induced cardiotoxicity. 
Clinicians emphasized that integrating continuous monitoring with 
predictive risk scores facilitates a proactive approach to managing 
cardiotoxicity, enabling earlier interventions and more informed de-
cisions before critical conditions arise. This represents a significant 
shift from traditional reactive workflows, aligning with broader 
trends in healthcare toward preventive care, as discussed in prior 
work [27, 103], and demonstrates how our system translates this 
approach into actionable clinical practice. 

Additionally, we propose several design considerations critical 
for the successful deployment of our system in real-world settings. 
These insights also serve as valuable guidance for future designers 
developing multimodal AI-based systems for clinical applications. 

6.2.1 Fostering Accurate User Expectations through UI and XAI De-
sign. A foundational design consideration for multimodal AI-based 
systems in clinical settings is fostering accurate user expectations 
by leveraging UI and explainable AI (XAI) design. Given the com-
plexity of these systems and their deployment in high-stakes clinical 
environments, it is essential to communicate their roles, capabili-
ties, and limitations to users. We suggest that such communication 
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be seamlessly embedded within the system’s design to ensure ac-
cessibility and usability while mitigating risks of over-reliance or 
inappropriate use. 

A key aspect of fostering accurate user expectations is to provide 
explicit delineation of the system’s roles, capabilities, and limita-
tions. Misunderstandings about what the system can and cannot do 
can lead to misuse with potentially severe consequences. For exam-
ple, clinicians in our study emphasized the importance of ensuring 
that patients understand the LLM-VA’s intended role as a tool for 
symptom tracking and not as a substitute for emergency care. Mis-
use in such situations could lead to delays in critical interventions, 
which may pose significant risks to patient safety. We suggest that 
designers use UI and XAI design strategies to integrate this infor-
mation directly into the system, instead of relying on methods like 
training sessions, manuals, and tutorials, which may not always be 
practical or accessible. For instance, designers can embed tooltips 
within the interface to provide contextualized definitions and expla-
nations of the system functionality and limitations and use visual 
cues, such as color-coded indicators, to highlight critical outputs. 
For example, in our system, AI-based predictive risk scores were 
accompanied by detailed definitions, and red color was used to 
signify the detection of red-flag symptoms to alert clinicians about 
high-risk scenarios. 

In addition to defining system roles and limitations, we recom-
mend that designers provide interpretable and actionable explana-
tions of the system’s outputs. Clinicians in our study highlighted 
the need to understand how AI-based risk predictions are generated, 
what they signify, and how they can inform actionable insights. 
In response to this need, our system incorporates explainable risk 
scores and feature importance indicators, which outline the key fac-
tors influencing each prediction. Additionally, these risk scores are 
accompanied by actionable recommendations tailored to different 
risk levels, providing clinicians with clear guidance on potential 
next steps. We suggest that designers consider how to provide ex-
planations tailored to the nature of the technologies used in the 
system, such as detailing the sources of outputs, clarifying the rea-
soning behind predictions, and presenting insights in a concise and 
actionable format. 

Explainability and expectation management should also remain 
dynamic, evolving alongside technological advancements and clini-
cal workflow changes. For example, when new features are added 
or algorithms are improved, interfaces should be updated to reflect 
these changes accordingly. This could better support ongoing dia-
logue between stakeholders and designers, fostering a collaborative 
relationship that builds trust and accountability over time. 

6.2.2 Balancing Clinical Benefits and Added Workload. Another 
design consideration for multimodal AI-based systems in clinical 
decision-making is ensuring that the systems deliver clinical bene-
fits without imposing additional workload and cognitive burden on 
clinicians. While the potential of such systems lies in their ability to 
provide comprehensive information, their effectiveness hinges on 
how this information is curated, prioritized, and presented. Poorly 
designed systems could overwhelm users with excessive informa-
tion, reduce efficiency, and hinder clinicians’ ability to make timely 
and informed decisions. 

To achieve additional clinical benefits, such systems often require 
the collection of extra data or the introduction of new information 
into clinicians’ workflows. For example, in our study, clinicians 
highlighted the tension between the value of having more data and 
the potential for information overload. Integrating AI-generated 
risk scores into the system provided valuable insights but also re-
quired clinicians to spend additional time interpreting these scores, 
assessing their accuracy, and evaluating their relevance. This in-
herent trade-off between added benefits and increased cognitive 
effort presents a significant design challenge. To address this, we 
recommend that designers leverage implicit user interactions with 
newly introduced information or functionalities as feedback to 
improve the system, taking this as an opportunity to minimize 
the additional workload introduced. This approach aligns with AI-
in-the-loop principles, enabling systems to adapt dynamically to 
user behaviors. For instance, clinicians’ frequent engagement with 
specific flagged metrics could guide the system to refine its prioriti-
zation algorithms, thereby reducing cognitive effort and enhancing 
efficiency over time. 

Another key aspect is designing systems that align with the di-
verse workflows and priorities of different clinical specialties. For 
instance, cardiologists in our study prioritized EKG data as a criti-
cal diagnostic tool, while oncologists placed greater emphasis on 
treatment plans and patient histories. This divergence underscores 
the importance of customizable system features, such as tailored 
notifications, adaptable dashboards, and role-specific thresholds. 
We recommend that designers actively collaborate with clinicians 
during the design process to identify these specialty-specific needs 
and ensure that systems accommodate them effectively. However, 
customization must be balanced with consistency: while personal-
ized features can enhance relevance, preserving core functionalities 
across all user groups is essential to maintaining system usability, 
reliability, and safety. 

6.3 Technical, Ethical and Privacy Concerns 
While the scope of our study focuses on designing an interactive 
UI for the clinician-facing information dashboard to support clin-
icians’ decision-making, which does not extend to patient-facing 
interfaces or technologies, clinicians highlighted several concerns 
regarding the multimodal AI-based system for clinical decision-
making. These concerns encompass infrastructure challenges, ethi-
cal considerations, and privacy risks which need to be addressed 
before real-world deployment. 

6.3.1 Infrastructure Challenges. A critical concern is the need for 
robust infrastructure support, including reliable internet connec-
tions, functioning devices, and interoperability between systems. 
Clinicians noted that technical failures, such as malfunctioning de-
vices or poor Wi-Fi connectivity, could disrupt real-time symptom 
monitoring, delay interventions, and undermine the effectiveness 
of the system. Ensuring reliable IT infrastructure and technical 
support will be critical for the success of these systems. In addition 
to infrastructure, human resources are essential for ongoing moni-
toring and maintenance. While AI can automate data collection and 
analysis, human oversight remains crucial for interpreting alerts 
and responding to abnormal data. Clinicians expressed concerns 
about the increased workload that this can place on healthcare 
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teams, particularly in 24/7 monitoring environments. Managing 
these demands will require careful planning to avoid overburdening 
staff and ensure continuous, high-quality care. 

6.3.2 Ethical Concerns. Beyond technical and resource challenges, 
clinicians raised ethical concerns, particularly around the potential 
for patients to over-rely on AI-based systems. Clinicians expressed 
concern that patients might assume logging symptoms into a system 
guarantees immediate intervention, even when healthcare teams 
are unavailable, without fully understanding the limitations of tech-
nology. This risk is further amplified in underserved communities 
where access to clinicians is already limited, potentially leading to 
a false sense of security. 

In this context, the role of patient education becomes paramount. 
Our findings suggest that empowering patients through technology 
must be accompanied by clear communication about the system’s 
capabilities and limitations. While AI-based systems can provide 
valuable insight and suggestions, patients need to be aware of which 
symptoms warrant immediate medical attention and which can be 
monitored through the system. Without this education, there is a 
risk that patients misunderstand the urgency of their symptoms and 
rely on the system inappropriately, leading to delayed interventions. 
This underscores the importance of designing AI-based systems 
that not only provide accurate information but also guide patients 
in making informed decisions about when to escalate their concerns 
to human clinicians. 

6.3.3 Privacy and Security Cocerns. Privacy and security concerns 
are also central to the implementation of AI and LLM-based sys-
tems. As these technologies handle sensitive patient data, ensuring 
the confidentiality and integrity of this information becomes cru-
cial. Our study revealed that clinicians are particularly concerned 
about how patient data is stored, transmitted, and accessed within 
AI-based systems. The increasing reliance on AI raises questions 
about data breaches and unauthorized access, which could under-
mine patient trust and pose significant legal risks. Clinicians also 
highlighted the need for transparency in data handling practices 
to build trust among stakeholders. This includes clear communi-
cation about who has access to the data, how it is used, and the 
safeguards in place to protect it. Robust data governance frame-
works are essential to address these concerns, ensuring compliance 
with legal and ethical standards while maintaining the confidential-
ity and integrity of patient information. While this study focuses 
on designing the clinician-facing dashboard for decision support, 
addressing privacy and security concerns across the entire multi-
modal AI-based system – including patient-facing components such 
as wearables and voice assistants – will be critical. These aspects 
fall outside the scope of the current work but will be addressed in 
future efforts to design and integrate a complete remote monitoring 
and decision-making support system. 

6.4 Future Directions & Limitations 
Our work has several limitations. First, our sample sizes are limited. 
We involved 11 clinicians during the participatory design phase and 
four clinicians for the heuristic evaluation, similar to prior stud-
ies using small, expert-focused samples to gather domain-specific 
insights [8, 13, 51, 113, 115]. Recruiting clinicians, especially in 

specialized domains like cardiotoxicity, presents unique challenges 
due to their demanding schedules, limited availability, and the 
niche nature of the expertise required. Despite these constraints, 
we considered the concept of information power, which posits that 
smaller, targeted samples can be sufficient when participants are 
highly specific to the study’s aims and the data collected is rich 
and relevant [65]. The recurring themes and consistent patterns 
observed across both phases further support the adequacy of our 
sample sizes in achieving the study’s objectives. However, all partic-
ipants were recruited from a single hospital, which may introduce 
systematic biases. Also, our participant pool only included cardiol-
ogists and oncologists – the primary stakeholders in cardiotoxicity 
decision-making – other specialists, such as rheumatologists, radi-
ologists, and nurses, could offer valuable perspectives depending on 
the specific cancer types or treatment pathways. We suggest future 
work could expand the participant pool to include a more diverse 
range of roles and institutions to enhance the generalizability of 
findings further and explore the system’s applicability in different 
clinical contexts. 

Second, our system is a proof-of-concept prototype and has not 
been integrated into EHR systems or deployed in real-world clin-
ical settings. The current prototype was used as a design probe 
to elicit clinician feedback on usability and decision-supporting 
functionalities, serving as a preliminary feasibility evaluation in a 
simulated environment. By conducting this initial evaluation, we 
aimed to avoid prematurely investing significant time and effort 
from domain experts in a large-scale controlled usability experiment 
before addressing key design and functional concerns. While this 
approach provides valuable early insights, it may influence the valid-
ity and generalizability of our findings. As discussed in Section 6.3, 
real-world deployment may reveal additional challenges, such as 
seamless EHR integration, operational scalability, and privacy and 
ethical concerns. Future work should consider these challenges to 
ensure the system’s robustness and practical utility. 

Third, our study specifically focused on the interactive UI design 
of the clinician-facing dashboard and its core functionalities from 
the clinicians’ perspectives. We explored how the clinician-facing 
dashboard could support clinicians’ decision-making in managing 
cancer treatment-induced cardiotoxicity. Evaluations of patient-
facing components, such as patients’ interactions with the LLM-
VA or their experiences using wearables for symptom tracking, 
were beyond the scope of this study. Future work should include 
comprehensive and systematic evaluations of these patient-facing 
modules, such as assessing the LLM-VA for symptom reporting and 
wearables for continuous monitoring. These aspects are critical 
for scaling the system to real-world deployments and ensuring 
it effectively meets the needs of all stakeholders, including both 
patients and clinicians. 

Also, fostering trust in AI-based tools is fundamental, partic-
ularly in high-stakes clinical settings. In this study, we explored 
the potential of explainable AI technologies to help domain ex-
perts better understand the outputs of AI and LLM-based systems. 
However, trust is a multifaceted concept, encompassing not only 
technical transparency but also reliability, openness, tangibility, etc. 
Future work could delve deeper into strategies for fostering trust in 
LLM-VA and AI models, such as incorporating uncertainty metrics 
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that highlight the confidence level of predictions, and explore the 
interplay between these strategies and users’ perceptions of trust. 

Last but not least, while this study focused on cardiotoxicity, 
there is a broader need to investigate how similar AI-based systems 
can be applied to other clinical areas where early detection and in-
tervention are critical. By exploring the deployment of proactive AI 
tools in various healthcare contexts, future work can help improve 
patient outcomes and optimize decision-making processes across 
different conditions. 

7 Conclusion 
In this study, we explore clinicians’ challenges in managing can-
cer treatment-induced cardiotoxicity and develop a multimodal 
AI-based system, CardioAI, to support symptom monitoring and 
risk prediction. Through participatory design sessions with 11 clin-
icians, we uncovered the complexity of managing cardiotoxicity 
and identified gaps in existing monitoring approaches. Our system 
provides continuous monitoring of symptoms via wearable devices 
and LLM-based VA, and explainable AI-based predictive risk scores, 
which offer actionable insights to support clinical decision-making. 
Evaluation by clinical experts highlighted the system’s ability to 
reduce information overload, streamline workflows, and support 
proactive decision-making. These findings contribute to the grow-
ing field of HCI in healthcare, providing a foundation for future 
development of technologies to address similar challenges in clini-
cal decision-making tasks. We envision that our work can inspire 
future designs of multimodal AI-based systems. 
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A Participatory Design Exit Interview Script 
• Question 1 - Background: Could you please tell me a bit 
more about yourself and your practice, such as your years 
of study, residence, daily workload, etc.? 

• Question 2 - Experience of Cancer Treatment-Induced 
Cardiotoxicity: Can you recall a recent cardiotoxicity en-
counter for a cancer patient during treatment or near the 
completion stage? When did it happen? What types of cancer 
and cancer treatment were given? 

• Question 3 - Diagnosis and Monitoring of Cancer Treatment-
Induced Cardiotoxicity: When do you suspect cardiotoxic-
ity? What symptoms or signals lead to your suspicion? How 
do you solve the problem? 

• Question 4 - Technology Uses and Potentials in Cur-
rent Cancer Treatment-Induced Cardiotoxicity Man-
agement: What kind of technology have you been using? 
Are you aware of any technologies or tools that others in 
your field or institutions have been exploring or adopting 
for cancer treatments and cardiotoxicity management? 

• Question 5 - Perspectives Towards Potential Technolo-
gies: Are you familiar with or have you explored the po-
tential uses of emerging technologies, such as wearables, 
chatbots, or AI-based risk prediction models? Do you think 
any of these technologies could benefit risk management 
and early diagnosis? Do you have any concerns? [What in-
formation do you wish AI could have provided you?][What 
metrics or symptoms do you think might be important to 
collect when a patient is at home?] 

• Question 6 - Closing Questions: Is there anything else 
that you would like to share with us or any questions you 
have for us? 

B Heuristic Evaluation Exit Interview Script 
• Question 1 - Overall Feedback: Can you share your overall 
feedback on the system? 

• Question 2 - Information Use: Do you find the informa-
tion provided helpful for assisting in decision-making? Was 
the amount of information appropriate (e.g., too much, too 
little, or just right)? 

• Question 3 - Interaction Design: How would you describe 
your overall experience with the system’s user interface and 
interaction design? What about data visualizations? [fur-
ther ask in terms of intuitive design, information display, 
customization, navigation, and alerts] 

• Question 4 - Concerns: Do you have any concerns about 
using this system in clinical workflows? 

• Question 5 - Future Design: What improvements or addi-
tional features would you suggest for future iterations of the 
system? [e.g., Is there any additional information you wish 
had been included?] 
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Table 2: Qualitative Codebook of Participatory Design Study Findings (Part 1) 

Theme Sub-Theme Example 

Challenges in Car-
diotoxicity Decision-
making 

Symptoms Not Just Subtle 
and Infrequent, But 
Sometimes Absent in the 
Early Stages 

"I got this message he had a severe form of arrhythmia... He was completely asymp-
tomatic. He was sitting at home relaxing, and the monitor picked up this thing." (P4) 

"So it all depends. If the patient, symptomatic or not, if they’re asymptomatic, then 
we’re the ones picking it up." (P6) 

"If a toxicity arises, especially that they’re asymptomatic from, they’re very hesitant 
to want to reach out.." (P1) 

Logistical Barriers 
Compound Self-Reporting 
Limitations 

"I think as much as we encourage them to reach out to us if they’re having symptoms, 
many of them still feel like they’re bothering us if they call." (P2) 

"In some areas, patients may not hear back right away from their physicians or 
nurses if they’re having symptoms... They may feel like they’re complaining too 
much or being a burden." (P1) 

Non-Specific Tools 
Compound Self-Reporting 
Limitations 

"It was it kind of presented itself (cardiotoxicity-related symptoms), and it had been 
almost 4 or 5 days before when she had first described the symptom." (P2) 

"We use a survey tool to ask patients how they’re feeling, but it’s not specific to 
cardiotoxicity.." (P5) 

Absence of Risk Patterns 
as an Additional Burden 
to Clinician Workload 

"What type of features correlate with the likelihood somebody’s going to have 
cardiotoxicity is still, I think, very shaky. From what I understand, I think we don’t 
have a good grasp." (P1) 

"Because he had no cardiac risk factors. He had no heart risk factors that could 
predict this side effect." (P4) 

Opportunities Continuous Monitoring of 
Key Clinical Metrics Using 
Wearables 

"I think we can pick up more patients with this. Or we can pick up patients earlier 
with this... We may be able to find more cardiac patients or cardiac adverse events 
related to our medications by doing this kind of monitoring." (P4) 

"I don’t know what they are like outside of the clinic ... Those things can sometimes 
be helpful. It’s almost like people who have cardiac monitors." (P1) 

Remote Monitoring for 
Geographically Distant 
Patients 

"A lot of our patients... travel very long distances to come here for treatment... they 
may call and be having an event where they feel really lightheaded or like they 
almost passed out... Having that data, especially if they can’t come in right away, is 
really helpful." (P1) 

"Doing more for patients in rural areas could be a place where this could work pretty 
well." (P11) 

LLM-Based 
Conversational Agent for 
Symptom Tracking 

"I asked them to keep checking at home and write it down on paper, and they bring 
it to me... But sometimes they forget, or you know things happen... the concept is 
great, and having the patient have control over the symptoms and speaking and just 
translated that into something that we can see." (P3) 

"This is a really good idea. And that way they talk, and they don’t need to be typing 
or spending time." (P2) 
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Table 3: Qualitative Codebook of Participatory Design Study Findings (Part 2) 

Theme Sub-Theme Example 

Opportunities AI-based Summarization "There’s a lot of burnout in medicine, and the burnout is from all of this documenta-
tion that we do. I see a huge role of AI in that documentation... fulfill out the EHR 
data automatically." (P1) 

"If you could summarize the medical record, I think that’d be really helpful. Instead 
of going all over the place, looking around, it would be helpful." (P2) 

AI-based Risk Prediction "If you are able to do it upfront, it would be very helpful... you will have to talk to 
some cardiologists to see how you define the score." (P4) 

"I think with AI there will be tools in place to even suggest what the next order 
should be... AI would help you understand what the next step could be even before 
you start talking to the patient." (P7) 

"I have not come across any risk scoring for cardiotoxicity. So I think that would be 
helpful." (P5) 

Design Suggestions Monitoring Key Clinical 
Metrics 

"Oxygen levels would be nice. I know a lot of these wearable devices can do that." 
(P2) 

"It’s heart rate. It’s basically heart rate. Yeah, that can be monitored." (P4) 

Monitoring Key Clinical 
Symptoms 

"Chest discomfort is good, shortness of breath, palpitations... These are all symptoms 
that we are looking out for... If they’re symptomatic, they should be checked quickly." 
(P4) 

"This is good; shortness of breath, palpitation, especially palpitations." (P8) 

Patient-Specific Baseline 
Alerts for Remote 
Monitoring 

"But there are normal ranges for all of these things, but I think the change is based 
on what the patient’s baseline is. There’s something called clinically meaningful 
change. That really depends on where the patient baseline is." (P6) 

"I think it’s most helpful to have a baseline because people come in with all variety 
of kind of where they were at before." (P1) 

Enhanced Visualizations 
for Critical Data 
Interpretation 

"The trend is extremely more important than just the one time." (P5) 

"Whenever the patient comes for their infusions, whenever they have the encounters 
with their physician. That could also be a good time to review these trends and alerts 
and see how they would change treatment decisions." (P8) 

"I think that would be helpful if patients are having an event where they felt like 
they were gonna pass out, or they were having palpitations to them, being able 
to correlate the time with whatever their biometrics were at the same time can be 
helpful." (P1) 

Clear Explanation of 
Technology to Prevent 
Misunderstanding 

"So you have to see what you build it (AI risk score) on... How will you define the 
score? The problem with scores is that you have to sit down and manually do that. If 
something does it for us, we’ll be happy to use it. ... AI is supposed to be my assistant, 
not my replacement." (P4) 

"Whenever we get this data and these scores, what do we do with it? ..especially 
patients are going to see cause. At the end of the day, it’s just having somewhat clear 
guidelines on what score means." (P1) 
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