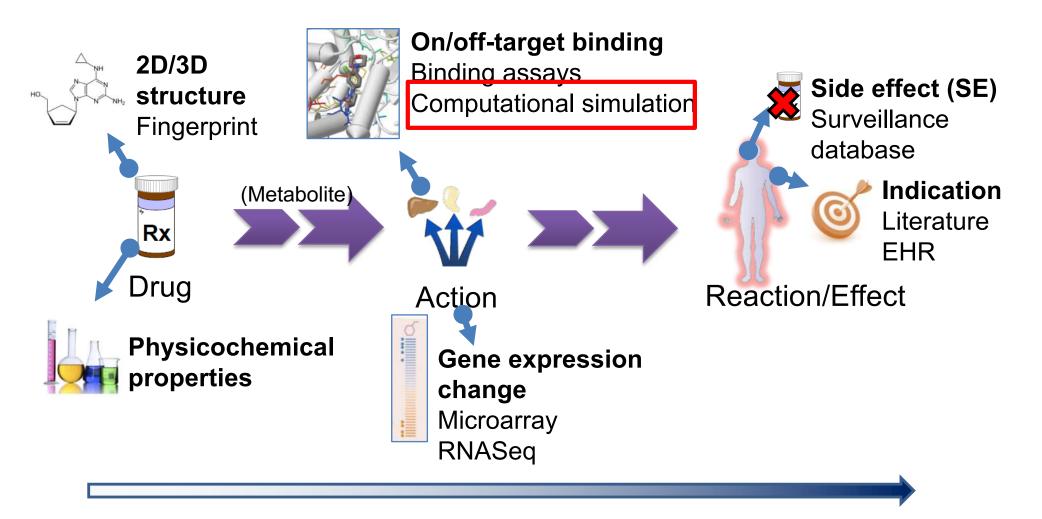
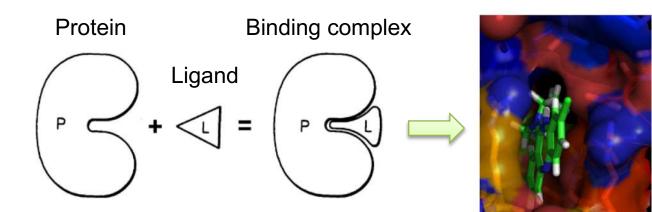
Big Data Science in Drug Discovery and Development


CIKM 2016 Tutorial Part II October 24th, 2016

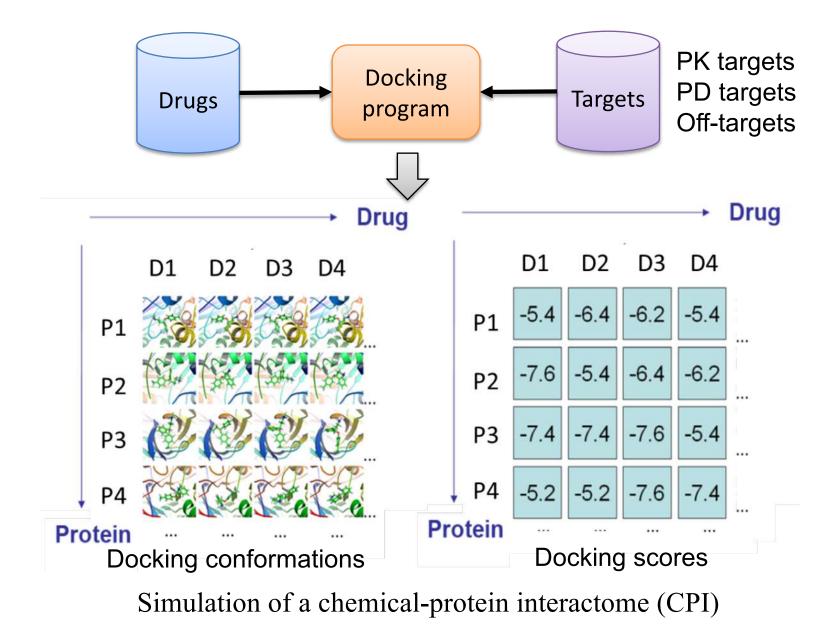
Ping Zhang Center for Computational Health IBM T.J. Watson Research Center <u>pzhang@us.ibm.com</u>

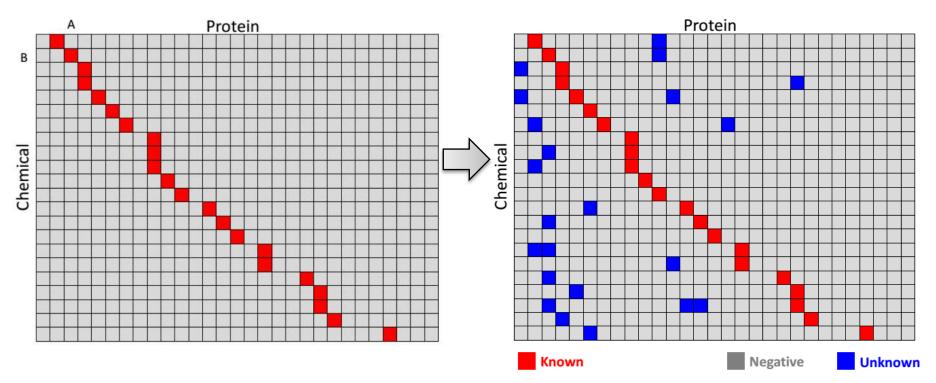
Outline


- Preclinical data analytics chemical-protein interactome (CPI) as an example
 - Drug-drug interaction prediction
 - Drug repositioning
- Patient data analytics real-world evidence (RWE) as an example
 - Drug safety signal detection from FAERS

Path from drug to effect

Molecular docking


- A docking program simulates the binding between a small molecule and a protein target.
 - Optimal binding position
 - Binding strength (docking score)

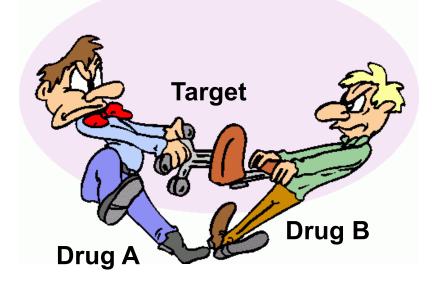

Drug binding inside the protein

PK: Pharmacokinetics PD: Pharmacodynamics

Chemical-protein interactome (CPI)

Why chemical-protein interactome?

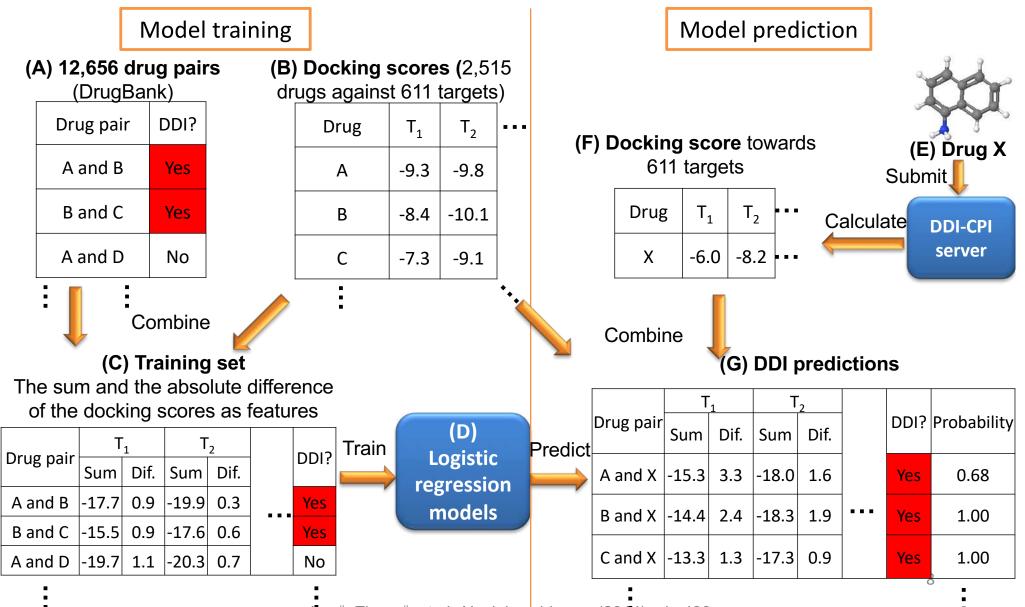
- Expand the existing knowledge
 - Identify potential off-target binding
- Fast 1 minute for a drug-protein pair
- Cheap compared to wet-lab experiments


Application 1: Drug-drug interactions

- Older patients usually take more than one drug
- 1/25 individuals have adverse reaction caused by drug–drug interactions (DDIs)

Types of DDIs

- Potentiation
- Interference
- Antagonism
- Displacement

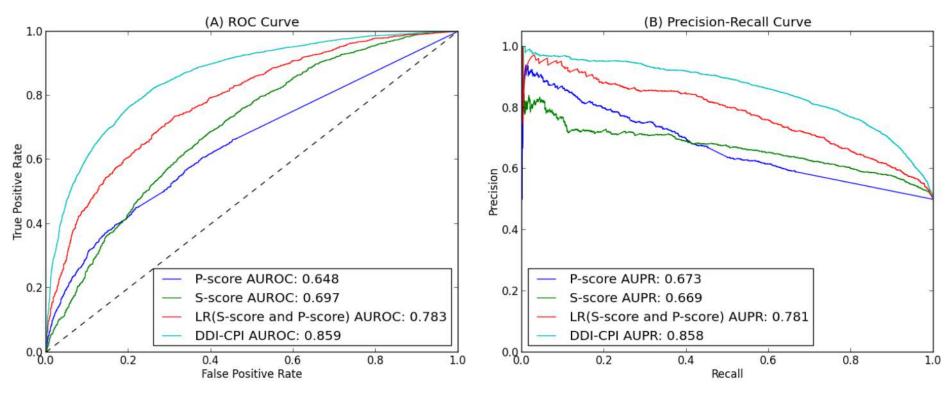


Two drugs compete for protein binding sites - a *major* cause for drugdrug interactions

Source: clipartpanda.com; Qato et al., JAMA (2008);300:2867-2878

DDI: drug-drug interactions

Workflow of DDI-CPI server



Luo#, Zhang#, et al. Nucleic acids res. (2014): gku433

Demo: DDI-CPI

000 Submit a molecule - DDI-	CPI × Drug interactions (Sertraline) × Binding pattern of User drug (×	+				2	
(S cpi.bio-x.cn/ddi/				∀ C (S • C	Google	Q) ☆ @ ♣ ☆	
	io-x.cn/ddi	a server Predic Chemical-Pr		in Interact	tome		
Navigation: Hom	e > <u>Submit a molecule</u>		_	We	Icome guest! Submit	a molecule/ Log c	
+ Home		C. L. M.					
Submit a molecule	Submit a molecule In order to protect privacy, your submissions will not be shown to others. Ø						
► Log out	You can upload a single-molecule file to be processed by our server.						
▶ Help	Here is an ex	ample file, upload it and w	vait for	r about 15 mins to o	check the result.		
▶ Contact us							
• How to cite	Upload a molecular file:	Browse No file selected.		Instructions to prep	2/pdb/pdbqt/sdf/smiles pare a molecule file		
	Or input SMILES string*:	D	raw	Molecular name*:			
	E-mail Address: 🔞	Т	he acco	ess link will be sent i	n the email (optional)		
	Your remark:						
		Submit	Rese	t			
expens	server is for research purposes only and es, charges, losses, damages or penalties ecommended browsers: FireFox, Chrome	of any kind incurred dire	ectly o	or indirectly arisi	ng from the use of this	s server.	

Results

The ROC and precision-recall curve comparison for different DDI prediction methods based on independent validation

P-score: uses side-effect similarities to predict target sharing (Campillos, et al. Science (2008), 321, 263-266.)

S-score: uses drug-target network to predict DDIs (Huang, et al. PLoS Comput Biol (2013), 9, e1002998)

LR(S-score and P-score): integrates P-score and S-score by a Bayesian probabilistic model

DDI-CPI: predicts DDI using machine learning models via CPI

MAOI: Monoamine oxidase inhibitor SSRI: Selective serotonin reuptake inhibitor

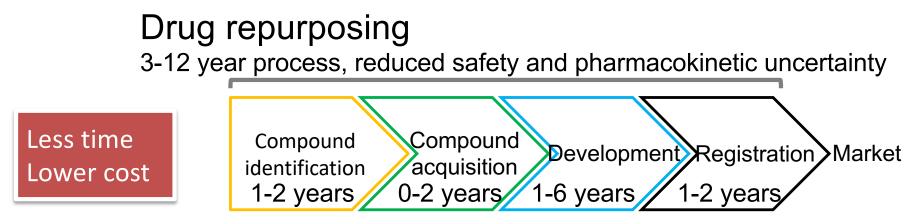
Case study - MAO-A inhibitors

Table 3 (adapted from referen Drugs to Avoid W	ce 6,7) <mark>'hen Taking MAOI</mark> s		1	ke	Contraction of the second seco
Amphetamines	Bupropion		- Vo		172 D
Cyclobenzaprine	Dextromethorphan			The Annual Concerned	
Linezolid	Meperidine		57		
Methadone	Mirtazapine		1	1 C	
SSRIs/SNRIs	TCA's				
Triptans	Tramadol				
Vasoconstrictors (psuedoephe Chlorpeniramine, bromphenira		cocaine)		<i>w</i>	Mydriasis
St. John's Wort	General anesthesia		6	- 1	
 SSRI with MA results in hig extracellular (5-HT) conce serotonin syr 	h serotonin ntration –	Hyperreflexia (greater in lower extremities) Tremor (greater in low extremities)			Agitation Diaphoresis Tachycardia

Case study - MAO-A inhibitors

MAO-A targets Ì 25 4 Isocarboxazid -9.4 -9.3 -9.2 Monoamine oxidase Linezolid -9.4 -10.2 -9.6 inhibitors (MAOIs) Naratriptan -9.3 -8.8 -8.9 Selective serotonin Sertraline -8.8 -9.7 -9.7 reuptake inhibitor (SSRI)

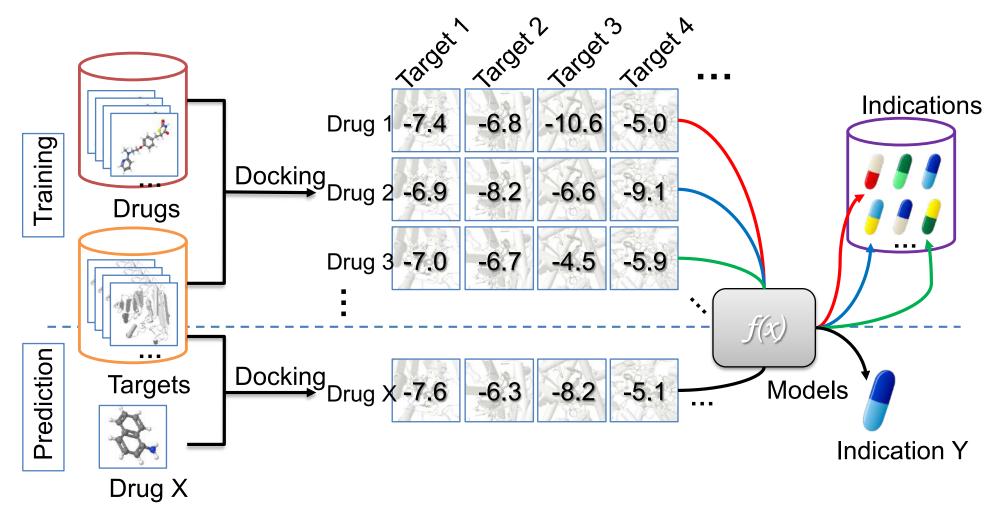
A subset CPI visualization between drugs and MAO-A targets


- The server predicts that sertraline may interact with isocarboxazid, linezolid, and naratriptan
- All of the predicted drugs can rank the MAO protein structures to the top 20% – possible mechanism suggested

Application 2: Drug repositioning

• Identify new indications for existing drugs.

De novo drug discovery and development 10-17 year process, <10% overall success rate


Ashburn, Nature reviews Drug discovery 3.8 (2004): 673-683.

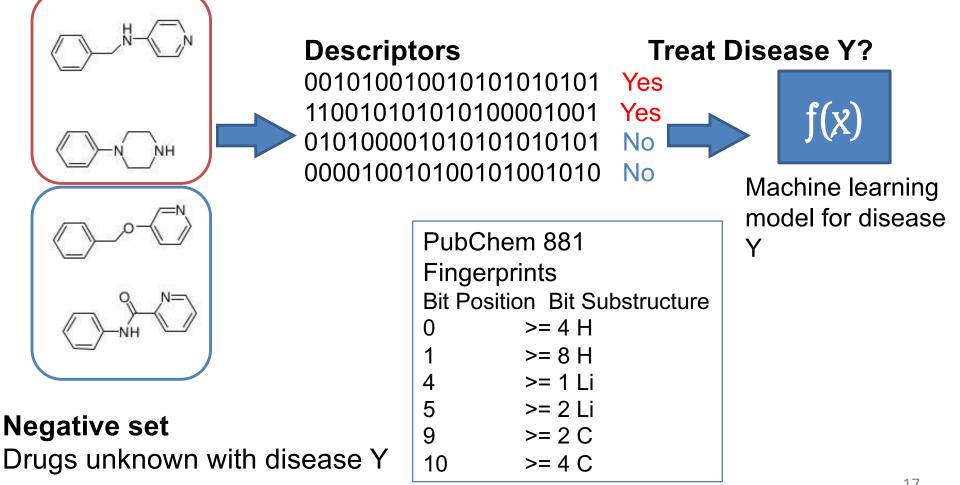
Revenue to pharmaceuticals

1. AstraZeneca	2. Bristol-Myers Squibb	3. Pfizer	4. Lilly
77% \$\$	58% \$\$	50% \$\$	44% \$\$
54% Rx	15% Rx	20% Rx	28% Rx
5. gsk GlaxoSmithKline	6. U NOVARTIS	7. C Abbott	8. S MERCK
37% \$\$	29% \$\$	24% \$\$	20% \$\$
24% Rx	25% Rx	17% Rx	20% Rx
9. SANOFI	10. Johnson Johnson	11. Bayer HealthCare	12. Roche
19% \$\$	13% \$\$	9% \$\$	6% \$\$
21% Rx	36% Rx	47% Rx	15% Rx

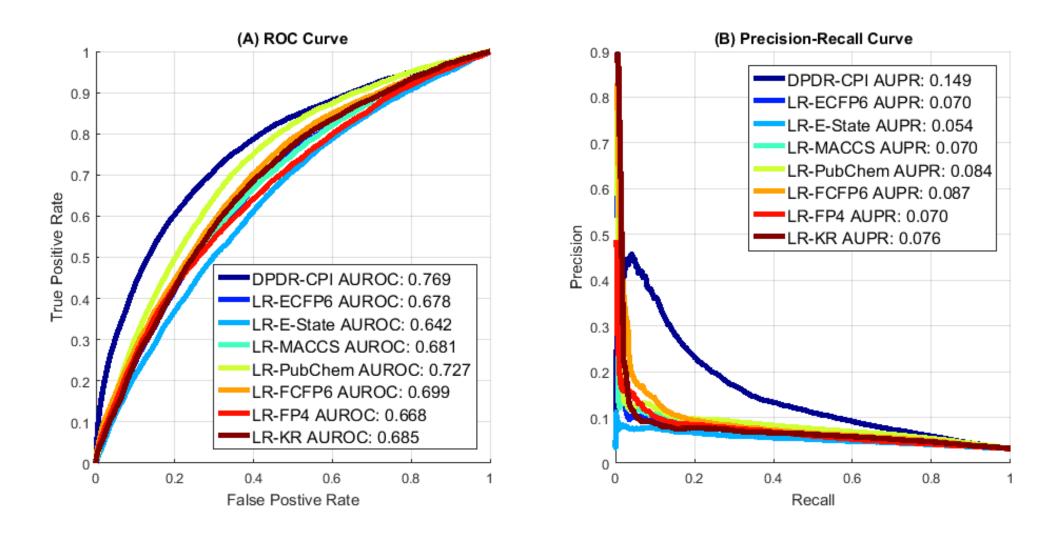
Contribution of the repositioned indications to the sales in 2011

Workflow of DPDR-CPI Server

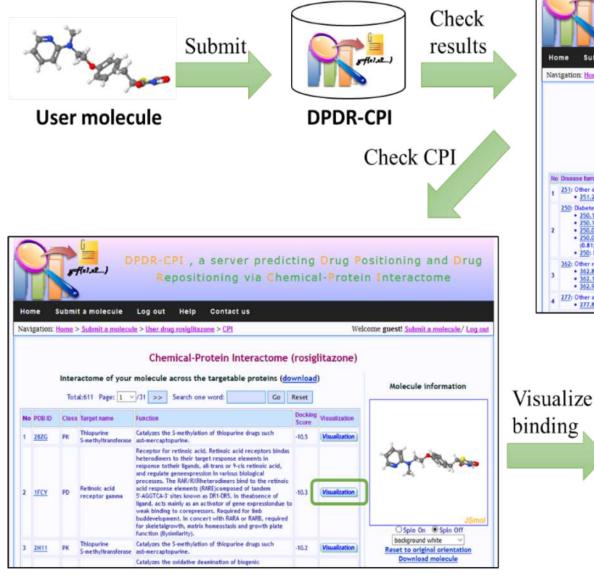
Luo#, Zhang#, et al. Scientific Reports. (2016)


Demo: DPDR-CPI

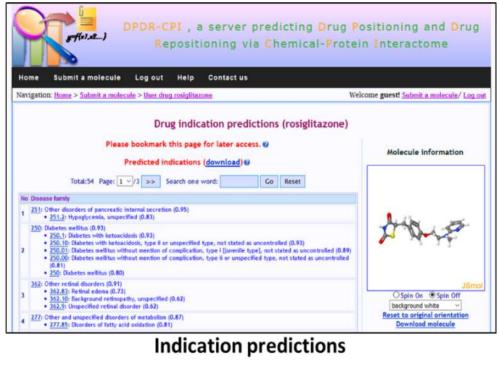
State-of-the-arts: Various fingerprints

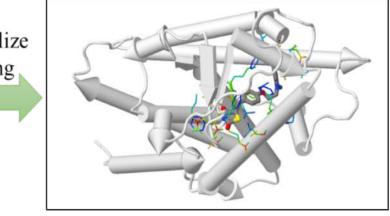

Positive set

Drugs known to treat disease Y


. . .

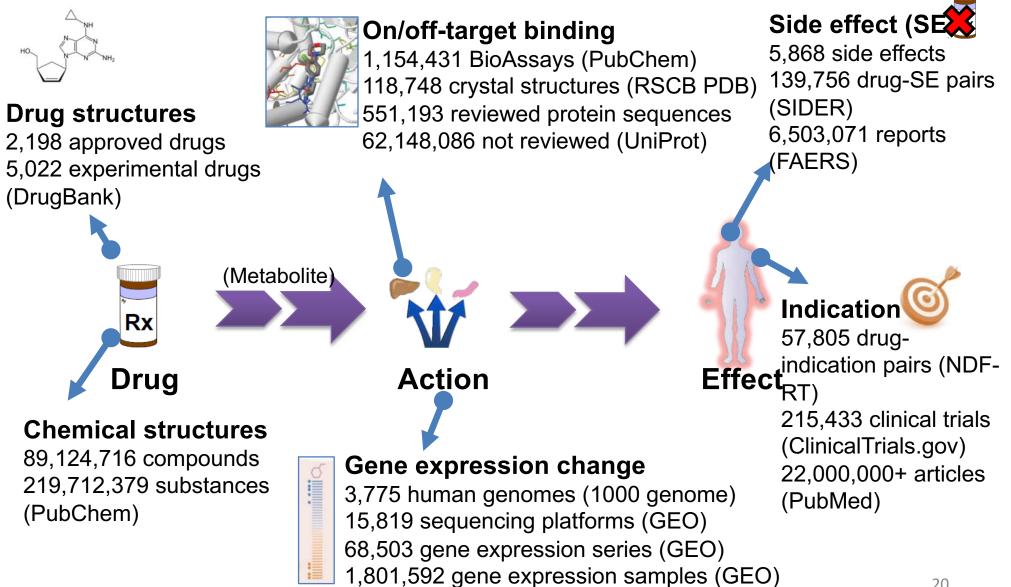
Performance comparison

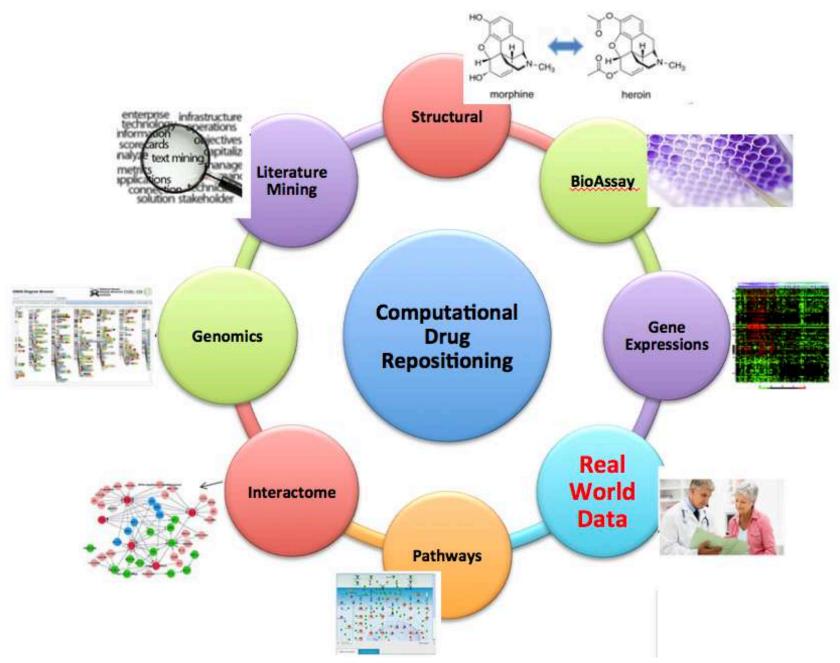



Performance comparison between DPDR-CPI and chemical structure-based predictors based on independent validation set 18

Case Study - Rosiglitazone

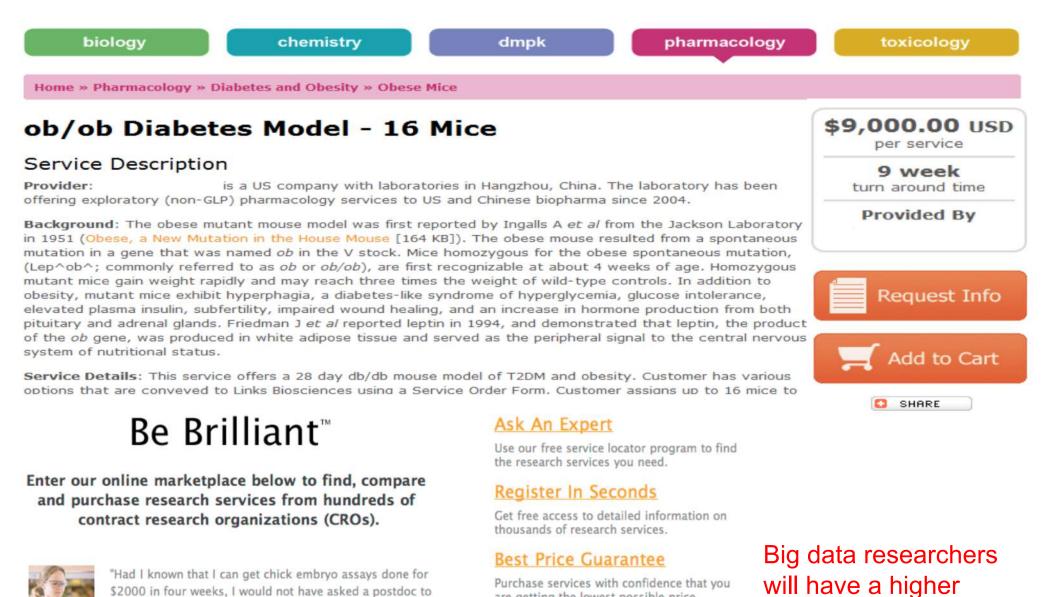
Target binding predictions




Binding conformation

By May 15, 2016

Free big data in the domain



Next: Multi-channel detailed computational hypothesis generation

21

And even beyond the hypothesis generation...

Purchase services with confidence that you

are getting the lowest possible price.

click for more information

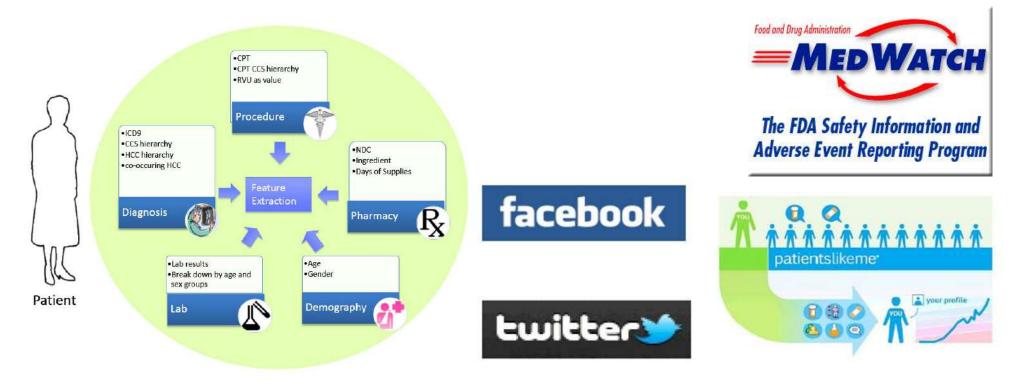
\$2000 in four weeks. I would not have asked a postdoc to spend a year setting it up in our lab."

Holger Wesche, Principal Scientist, Large Pharma

Validation methods are increasingly commoditized

22

impact in biomedicine


 (\bigcirc)

Outline

- Preclinical data analytics chemical-protein interactome (CPI) as an example
 - Drug-drug interaction prediction
 - Drug repositioning
- Patient data analytics real-world evidence (RWE) as an example
 - Drug safety signal detection from FAERS

What is "Real World Evidence" (RWE)

- RWE is clinical observations other than randomized clinical trials (RCT).
 - RWE are large-scale clinical observations from population
 - RCT are expensive and in far smaller scale
- RWE is observations on human in the clinical stage
 - Less of a translational issue
 - Other than "omics", numerous external factors (e.g., environment, diet and exercise) affect response to medication
- RWE is not only vast but also varied in type and source: electronic medical records (EMR), claims data, and even social media.

Application 3: Adverse drug reactions (ADRs)

- Post-approval ADRs remain a significant source of mortality and morbidity around the world
 - 2 million potentially preventable injuries, hospitalizations, and deaths each year in US alone
 - Associated cost estimated at \$75 billion annually

The New Hork Times

F.D.A. Issues New Alerts About Cholesterol Drugs

By GARDINER HARRIS Published: February 29, 2012

CORRECTION APPENDED

Federal health officials on Tuesday added new safety alerts to the prescribing information for statins, the cholesterol-reducing medications that are among the most widely prescribed drugs in the world, citing rare risks of memory loss, diabetes and muscle pain.

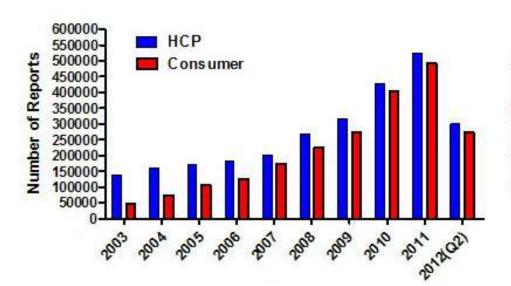
Statins are considered some of the safest drugs

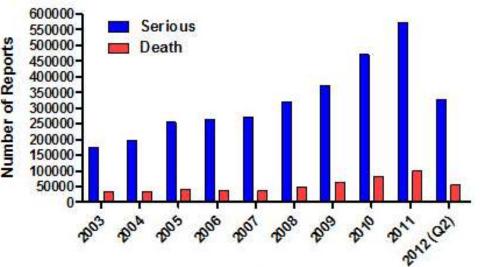
Merck Pulls Arthritis Drug Vioxx from Market

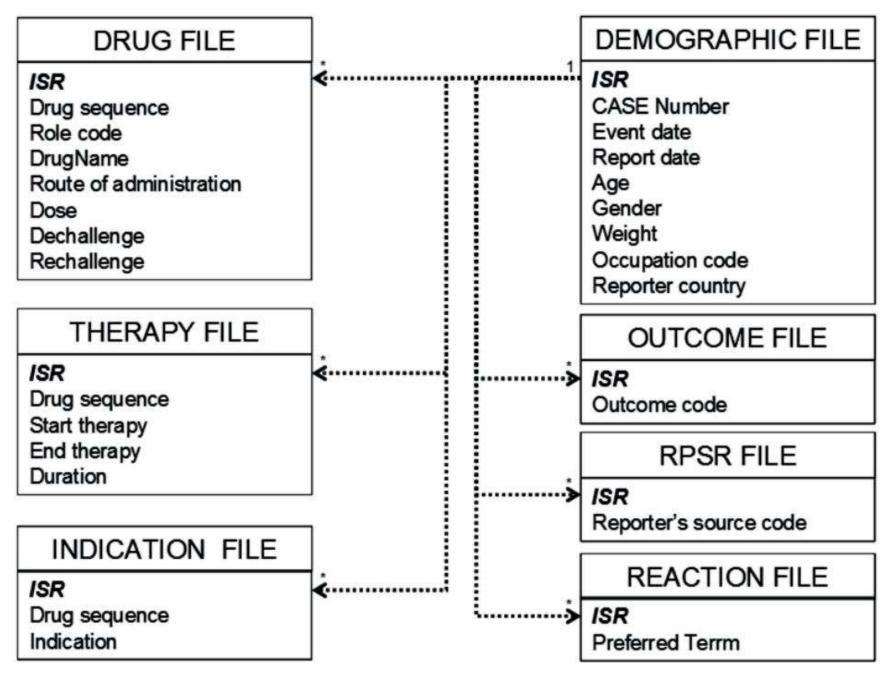
by RICHARD KNOX

September 30, 2004 12:00 AM ET

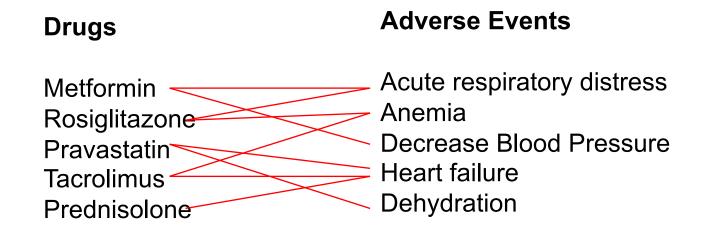
Pharmaceutical giant Merck & Co. is pulling its arthritis drug Vioxx from the market after a study confirmed earlier concerns that it raises the risk of heart problems, including heart attacks and stroke. Vioxx is currently used by 2 million people worldwide and has been used by more than 84 million people around the world, according to Merck.


- More than 140,000 cases of serious heart disease
- \$4.85 billion for legal claims from US citizens


Data sources of drug safety information in post market stage


FDA Adverse Event Reporting System (FAERS)

- FDA Adverse Event Reporting System (FAERS)
 - FDA has maintained AERS since 1968
 - Spontaneous reports of suspected ADRs collected from healthcare professionals, consumers, and pharms
 - Data (from Jan 2004 to June 2016) is publicly available at FDA's website!
- Over 5 million reports collected so far:
 - patient: age, sex, weight, country
 Often sparsely collected
 - drugs they are taking
 - diseases they were being treated for
 - the adverse events that occurred to that patient


FAERS database structure

Poluzzi et al. DOI: 10.5772/50095

Interpreting those FAERS reports is hard

- Many drugs, many adverse events
 - what causes what?
 - Most of these red lines are false which are true?

- Signal detection algorithms for FAERS
 - Quantify "unexpectedness": to identify drugs that have a greater proportion of a particular event compared to the proportion seen for other drugs
 - Sampling variance
 - Underreporting
 - Over reporting
 - Selection biases
 - Causative covariates other than drug under analysis

Disproportionality analysis

	reports	wae reports w/o	ae Total	
reports w drug	а	b	a+b	
reports w/o drug	С	d	c+d	
Total	a+c	b+d	a+b+c	+d
Measure of asso	ciation	Formula		Probabilistic interpretation
Relative reportir	ng (RR) ¹	$\frac{a(a+b+c+d)}{(a+c)(a+b)}$		Pr(ae drug) Pr(ae)
Proportional rep rate ratio (PRR)	oorting	$\frac{a(c+d)}{c(a+b)}$		$\frac{\Pr(ae \mid drug)}{\Pr(ae \mid \sim drug)}$
Reporting odds (ROR)	ratio	ad cb		$\frac{\Pr(ae \mid drug) \Pr(\sim ae \mid \sim drug)}{\Pr(\sim ae \mid drug) \Pr(ae \mid \sim drug)}$
Information component (IC) ²	1 = 1	$\log_2 \frac{a(a+b+c+d)}{(a+c)(a+d)}$		$\log_2 \frac{\Pr(ae \mid drug)}{\Pr(ae)}$

1. The RR, when implemented within an empirical Bayesian framework, is known as empirical Bayes geometric mean (EBGM); 2. The IC is a logarithmic RR metric that is implemented in a Bayesian framework.

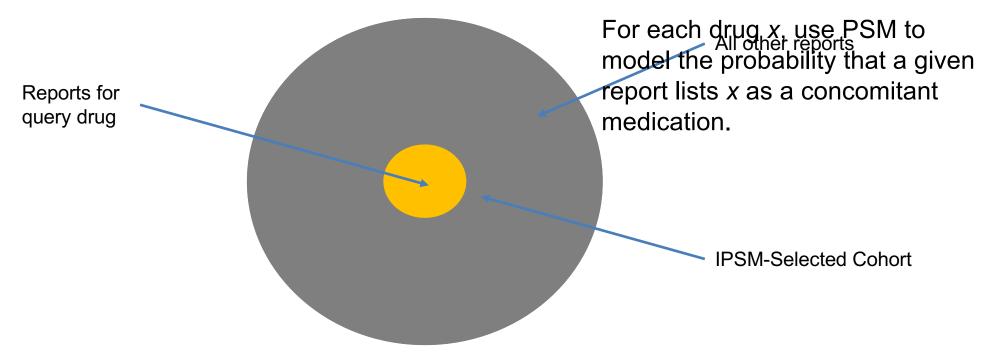
- Modern signal detection algorithms (e.g., EBGM, IC) could address sampling variance
 - Estimate confidence intervals (CIs) for disproportionality statistics
 - Dampen drug-event signals that have little evidence to support them
- How to address selection biases?

The Confounding Effect poses many challenges for ADR detection of real world events

Co-Prescription Confounders

Mary has arthritis, and has to take painkillers everyday. She has been taking both Aspirin and Vioxx. Which drug caused her heart attack?

Drug Indicator Confounders

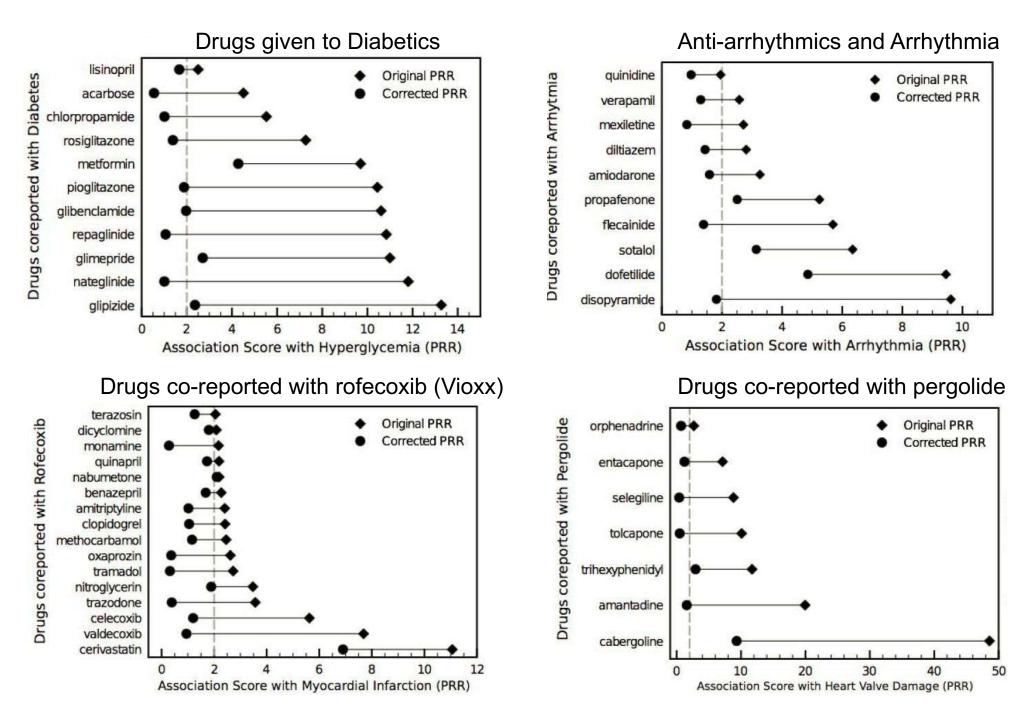

Joe is an alcoholic who develops Pancreatitis. He has been drinking daily and taking Naltrexone. What caused the Pancreatitis?

Selection biases in FAERS reports

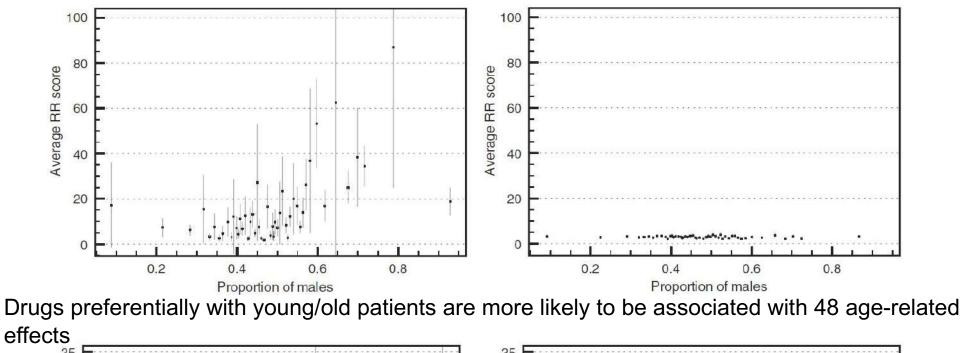
- Selection biases introduce "synthetic associations"
 - (e.g.) from concomitant drug use (co-Rx effect)
 - drugs co-prescribed with Vioxx more likely to be associated with heart attacks
 - (e.g.) from indications (indication effect)
 - drugs given to diabetics more likely to be associated with hyperglycemia
 - (e.g.) co-Rx effect and indication effect extend to other covariates
 - Patients reported to be taking a cholesterol-lowering agent are more likely to be older, and this may cause these drugs to be synthetically associated with agerelated effects, such as hypertension or myocardial infarction (age bias).
- Propensity score matching (PSM) corrects for bias of MEASURED covariates
 - Identify matched controls for the studied cases in observational clinical studies
 - Model the likelihood of a case being selected based on the covariates
 - PS = Estimated Pr(Exposed+| covariates)~ age + sex + weight +
 - Match each case with one or more controls with the same likelihood
 - However, PSM requires the covariates to be both known and measured; neither parameter is guaranteed to be present in FAERS

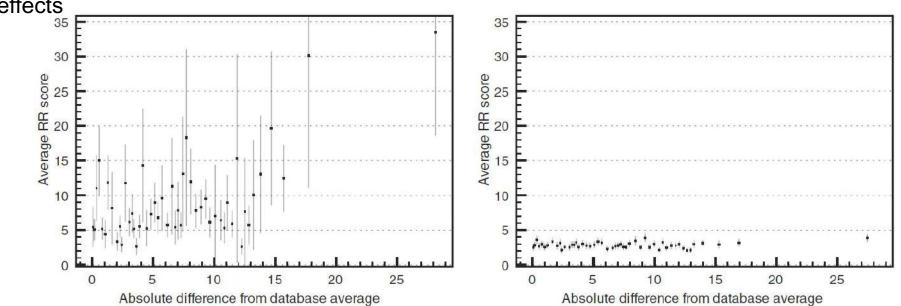

Implicit Propensity Score Matching (IPSM)

- Invented by Tatonetti NP et al. *Sci Transl Med*. 2012;4(125):125ra31.
- Assumes combination of co-reported drugs and co-indications describes all patient covariates. Generate a probability of a patient receiving a drug given coprescribed medications and comorbidities.


- First, reduce to only those reports that have co-prescribed prescriptions listed
- Second, reduce to only those reports that have correlated indications listed

Takes advantage of co-Rx and indication variables likely to co-vary with unmeasured covariates




- Example: Reporting of hyperglycemia with diabetes drugs
- **Observed** reporting frequency: 17.7%
- **Expected** Estimates:
 - Entire database expected frequency: 1.5%
 - PRR = 17.7%/1.5% = 11.8!!!!!
 - IPSM-derived expected frequency: 17.6%
 - PRR = 17.7%/17.6% = 1.0 ...

IPSM corrects for indication and co-Rx biases

IPSM implicit correction for other biases

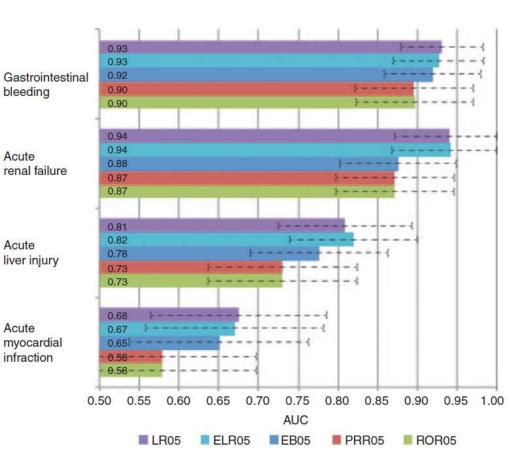
Drugs preferentially with males are more likely to be associated with 33 sex-related (male) effects

Performance of Pharmacovigilance Signal-Detection Algorithms for FAERS

• Data: FAERS data covered the period from 1968 through 2011 Q3, totaling 4,784,337 reports.

	Method name	Signal score computed
Disproportion ality Analysis	Multi-item Gamma Poisson Shrinker (MGPS)	EBGM (empirical Bayes geometric mean): a centrality measure of the posterior distribution of the true observed-to-expected in the population EB05: lower 5th percentile of the posterior observed-to-expected distribution
	Proportional Reporting Ratio (PRR)	PRR: point estimate (mean) of the relative risk reporting ratio distribution PRR05: lower 5th percentile of the relative risk reporting ratio distribution
Reporting Odds Ratio (ROR)		ROR: point estimate (mean) of the reporting odds ratio distribution ROR05: lower 5th percentile of the reporting odds ratio distribution
Multivariate Modeling	Logistic Regression (LR)	LR: point estimate of the odds ratio distribution obtained from logistic regression LR05: lower 5th percentile of the odds ratio distribution obtained from logistic regression
	Extended Logistic Regression (ELR)	ELR: point estimate of the odds ratio distribution obtained from extended logistic regression ELR05: lower 5th percentile of the odds ratio obtained from extended logistic regression

The application of biomedical gold standards


Positive Drug Set for an ADR:

- Event listed in Boxed Warning or Warnings/Precautions section of active FDA structured product label
- Drug listed as 'causative agent' in Tisdale et al, 2010: "Drug-Induced Diseases" [35]
- Literature review identified no powered studies with refuting evidence of effect

Negative Set:

- Event not listed anywhere in any section of active FDA structured product label
- Drug not listed as 'causative agent' in Tisdale et al, 2010: "Drug-Induced Diseases"[35]
- Literature review identified no powered studies with evidence of potential positive association

Event	Positive Cases	Negative Case	Total
Gastrointestinal Bleeding	24	67	91
Acute Liver Injury	80	37	117
Acute Myocardial Infarction	36	66	102
Acute Renal Failure	24	64	88
Total	164	234	398

Summary - strengths and weaknesses of notable signal detection methods

	PRR	ROR	MGPS	BCPNN	LR
Simple to use	\bigcirc	\bigcirc	٥	٥	٥
Applicable to low event counts	۵		\bigcirc	\bigcirc	G
Easy to interpret	\bigcirc	\bigcirc	٥	٩	G
Usable with SRS data	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Accounts for confounding factors	\bigcirc	\bigcirc		\bigcirc	0
Sensitivity	\bigcirc	\bigcirc		٩	\bigcirc
Specificity	G	G	٥	٥	G
	٥		G	G	G

Triaging to select signals and follow up

QUANTITATIVE "RULES"

QUALITATIVE "RULES"

Apply fixed thresholds

- •EB05 ≥2; EBGM ≥2; EBGM ≥4;
- PRR ≥2; a number of reports (N) ≥3; a Chi-square ≥4
- •Lower 95% CI of PRR ≥1
- •Lower 95% CI of ROR ≥1
- •IC025 > 0

• Apply flexible thresholds

•Estimate the false discovery rate (FDR) to decide threshold on a signal-by-signal basis

Novel

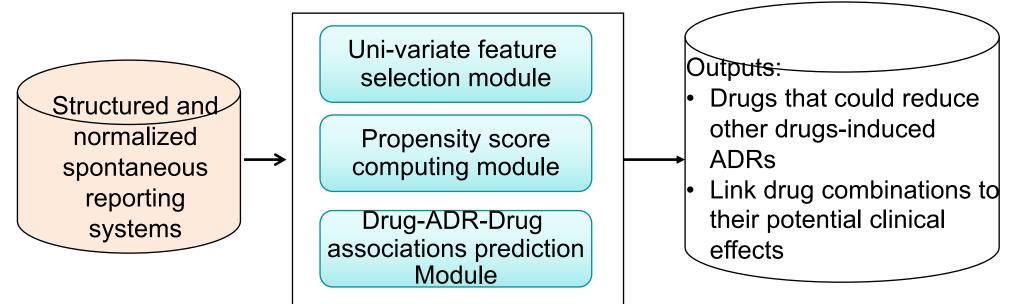
- •Not currently known and on drug label
- •New adverse event or new drug ("early warning")

High potential relevance

- •Public health issue e.g. important drug (serious indication, widely used), serious reaction, many cases
- •Change in merit/harm
- Strong evidence
 - •Exposure-response relationship (site, time-to-onset, dose, reversibility in dechallenge/rechallenge)
 - Reasonable from a biological mechanism perspective
- •Time trend
 - •Surge in recent reporting, notable increase in reporting over time

Beyond ADR detection

Common drug combo increases diabetes risk



A combination of two common drugs – paroxetine (one an antidepressant), pravastatin (the other used to lower blood cholesterol) – that caused blood sugar to rise, may put people at risk of developing diabetes.

Beyond ADR detection

Common drug combo decreases ADRs

Data to knowledge generator

 $logit(P(ADR = 1)) = \beta_0 + \beta_1 DrugA + \beta_2 P_1 + \beta_3 DrugB + \beta_4 P_2 + \beta_5 DrugA * DrugB + \lambda |\beta|_1$

The novel regularized logistic regression is able to reveal two different mechanism of drug combinations

• $(\beta_3 + \beta_5)$: the degree that a patient who is on Drug A could benefit or suffer from taking Drug B for the ADR of interest

• β_5 : the degree that the interaction effect between Drug B and Drug A on the ADR

Pamidronate is used to treat high blood calcium levels

Clinical Validation

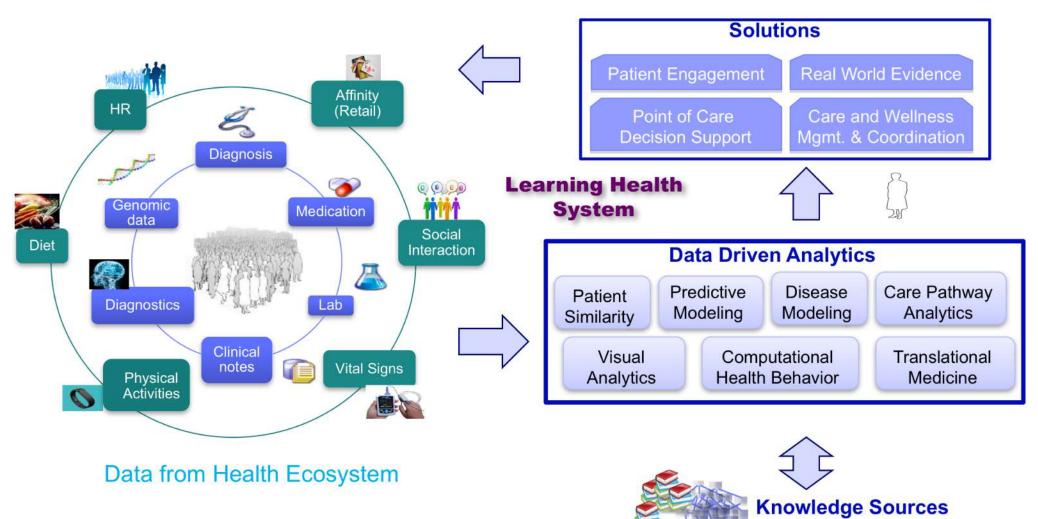
List of 15 predicted beneficial drug combinations and their ADR reduction

Drug A name	ADRs associated with drug A	Drug B name	Predicted beneficial	Common ATC	Evidence for combined
	with drug A		score	code	use
benazepril	DIZZINESS	amlodipine besylate	-0.57	yes	F
atovaquone	PYREXIA	proguanil	-0.36	yes	F
•	MYOCARDIAL			-	
rofecoxib	INFARCTION	pamidronate	-0.33	yes	
	MYOCARDIAL			2	
rosiglitazone	INFARCTION	exenatide	-0.32	yes	
progesterone	BREAST CANCER	adalimumab	-0.27	no	
trimethoprim	PYREXIA	sulfamethoxazole	-0.17	yes	F
exemestane	ARTHRALGIA	everolimus	-0.16	yes	III
amoxicillin	DIARRHOEA	clavulanic acid	-0.15	yes	IV
ampicillin	PYREXIA	sulbactam	-0.15	yes	F
desmopressin	HYPONATRAEMIA	somatropin	-0.15	yes	
sertraline	ANXIETY	nicotinic acids	-0.14	no	
sumatriptan	MIGRAINE	naproxen	-0.14	no	F
1	DIABETES				
olanzapine	MELLITUS	biperiden	-0.13	yes	
clindamycin	DIARRHOEA	benzoyl	-0.13	yes	F
fluticasone	DYSPNOEA	salmeterol	-0.13	yes	F

F: FDA approved drug combination; III: phase III clinical trial; IV: phase IV clinical trial

a NSAID. On September 30, 2004, Merck withdrew rofecoxib from the market because of concerns about increased risk of heart attack and stroke associated with long-term, high-dosage use.

Our commitment to Health – IBM Moonshot


"I'm telling you, our moonshot will be the impact we will have on Healthcare. It has already started. We will change and do our part to change the face of Healthcare. I am absolutely positive about it. And that, to me, while we do many other things, that will be one of the most important."

Ginni Rometty IBM Chairman, President and CEO April 16, 2015

Center for Computational Health @ IBM

Multiple Positions Available:

- Interns
- Research Scientists
- Research Engineers

Contact: pzhang@us.ibm.com